These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28541336)

  • 1. Fixing the tomato: CRISPR edits correct plant-breeding snafu.
    Ledford H
    Nature; 2017 May; 545(7655):394-395. PubMed ID: 28541336
    [No Abstract]   [Full Text] [Related]  

  • 2. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system.
    Brooks C; Nekrasov V; Lippman ZB; Van Eck J
    Plant Physiol; 2014 Nov; 166(3):1292-7. PubMed ID: 25225186
    [No Abstract]   [Full Text] [Related]  

  • 3. GABA-enriched tomato is first CRISPR-edited food to enter market.
    Waltz E
    Nat Biotechnol; 2022 Jan; 40(1):9-11. PubMed ID: 34907351
    [No Abstract]   [Full Text] [Related]  

  • 4. Letter to the Editor: The World's First CRISPR Tomato Launched to a Japanese Market: The Social-Economic Impact of its Implementation on Crop Genome Editing.
    Ezura H
    Plant Cell Physiol; 2022 Jun; 63(6):731-733. PubMed ID: 35388425
    [No Abstract]   [Full Text] [Related]  

  • 5. Genome editing in plants using CRISPR type I-D nuclease.
    Osakabe K; Wada N; Miyaji T; Murakami E; Marui K; Ueta R; Hashimoto R; Abe-Hara C; Kong B; Yano K; Osakabe Y
    Commun Biol; 2020 Nov; 3(1):648. PubMed ID: 33159140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput CRISPR Vector Construction and Characterization of DNA Modifications by Generation of Tomato Hairy Roots.
    Jacobs TB; Martin GB
    J Vis Exp; 2016 Apr; (110):. PubMed ID: 27167304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of a Collection of Mutant Tomato Lines Using Pooled CRISPR Libraries.
    Jacobs TB; Zhang N; Patel D; Martin GB
    Plant Physiol; 2017 Aug; 174(4):2023-2037. PubMed ID: 28646085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion.
    Shimatani Z; Kashojiya S; Takayama M; Terada R; Arazoe T; Ishii H; Teramura H; Yamamoto T; Komatsu H; Miura K; Ezura H; Nishida K; Ariizumi T; Kondo A
    Nat Biotechnol; 2017 May; 35(5):441-443. PubMed ID: 28346401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis.
    Nonaka S; Arai C; Takayama M; Matsukura C; Ezura H
    Sci Rep; 2017 Aug; 7(1):7057. PubMed ID: 28765632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato Solanum peruvianum using protoplast regeneration.
    Lin CS; Hsu CT; Yuan YH; Zheng PX; Wu FH; Cheng QW; Wu YL; Wu TL; Lin S; Yue JJ; Cheng YH; Lin SI; Shih MC; Sheen J; Lin YC
    Plant Physiol; 2022 Mar; 188(4):1917-1930. PubMed ID: 35088855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trait discovery and editing in tomato.
    Rothan C; Diouf I; Causse M
    Plant J; 2019 Jan; 97(1):73-90. PubMed ID: 30417464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Editing to Achieve the Crop Ideotype in Tomato.
    Čermák T; Gasparini K; Kevei Z; Zsögön A
    Methods Mol Biol; 2021; 2264():219-244. PubMed ID: 33263914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato.
    Tran MT; Doan DTH; Kim J; Song YJ; Sung YW; Das S; Kim EJ; Son GH; Kim SH; Van Vu T; Kim JY
    Plant Cell Rep; 2021 Jun; 40(6):999-1011. PubMed ID: 33074435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model.
    Ron M; Kajala K; Pauluzzi G; Wang D; Reynoso MA; Zumstein K; Garcha J; Winte S; Masson H; Inagaki S; Federici F; Sinha N; Deal RB; Bailey-Serres J; Brady SM
    Plant Physiol; 2014 Oct; 166(2):455-69. PubMed ID: 24868032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid improvement of domestication traits in an orphan crop by genome editing.
    Lemmon ZH; Reem NT; Dalrymple J; Soyk S; Swartwood KE; Rodriguez-Leal D; Van Eck J; Lippman ZB
    Nat Plants; 2018 Oct; 4(10):766-770. PubMed ID: 30287957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tomato brown rugose fruit virus resistance generated by quadruple knockout of homologs of TOBAMOVIRUS MULTIPLICATION1 in tomato.
    Ishikawa M; Yoshida T; Matsuyama M; Kouzai Y; Kano A; Ishibashi K
    Plant Physiol; 2022 Jun; 189(2):679-686. PubMed ID: 35262730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening.
    Ito Y; Nishizawa-Yokoi A; Endo M; Mikami M; Toki S
    Biochem Biophys Res Commun; 2015 Nov; 467(1):76-82. PubMed ID: 26408904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects.
    Salava H; Thula S; Mohan V; Kumar R; Maghuly F
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33445555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LAMP-Coupled CRISPR-Cas12a Module for Rapid and Sensitive Detection of Plant DNA Viruses.
    Mahas A; Hassan N; Aman R; Marsic T; Wang Q; Ali Z; Mahfouz MM
    Viruses; 2021 Mar; 13(3):. PubMed ID: 33808947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening.
    Li R; Fu D; Zhu B; Luo Y; Zhu H
    Plant J; 2018 May; 94(3):513-524. PubMed ID: 29446503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.