BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28541376)

  • 1. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.
    Ma W; Yang L; Rohs R; Noble WS
    Bioinformatics; 2017 Oct; 33(19):3003-3010. PubMed ID: 28541376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
    Agius P; Arvey A; Chang W; Noble WS; Leslie C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites.
    Yang J; Ramsey SA
    Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BEESEM: estimation of binding energy models using HT-SELEX data.
    Ruan S; Swamidass SJ; Stormo GD
    Bioinformatics; 2017 Aug; 33(15):2288-2295. PubMed ID: 28379348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability selection for regression-based models of transcription factor-DNA binding specificity.
    Mordelet F; Horton J; Hartemink AJ; Engelhardt BE; Gordân R
    Bioinformatics; 2013 Jul; 29(13):i117-25. PubMed ID: 23812975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting in-vitro Transcription Factor Binding Sites Using DNA Sequence + Shape.
    Zhang Q; Shen Z; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):667-676. PubMed ID: 31634140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.
    Yang L; Zhou T; Dror I; Mathelier A; Wasserman WW; Gordân R; Rohs R
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D148-55. PubMed ID: 24214955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TFBSshape: an expanded motif database for DNA shape features of transcription factor binding sites.
    Chiu TP; Xin B; Markarian N; Wang Y; Rohs R
    Nucleic Acids Res; 2020 Jan; 48(D1):D246-D255. PubMed ID: 31665425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide prediction of minor-groove electrostatic potential enables biophysical modeling of protein-DNA binding.
    Chiu TP; Rao S; Mann RS; Honig B; Rohs R
    Nucleic Acids Res; 2017 Dec; 45(21):12565-12576. PubMed ID: 29040720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian hierarchical model of protein-binding microarray k-mer data reduces noise and identifies transcription factor subclasses and preferred k-mers.
    Jiang B; Liu JS; Bulyk ML
    Bioinformatics; 2013 Jun; 29(11):1390-8. PubMed ID: 23559638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting In-Vitro DNA-Protein Binding With a Spatially Aligned Fusion of Sequence and Shape.
    Zhang Q; Zhang Y; Wang S; Chen ZH; Gribova V; Filaretov VF; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3144-3153. PubMed ID: 34882561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels.
    Wang X; Kuwahara H; Gao X
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S5. PubMed ID: 25605483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEME-ChIP: motif analysis of large DNA datasets.
    Machanick P; Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1696-7. PubMed ID: 21486936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors.
    Berger MF; Bulyk ML
    Nat Protoc; 2009; 4(3):393-411. PubMed ID: 19265799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FastSK: fast sequence analysis with gapped string kernels.
    Blakely D; Collins E; Singh R; Norton A; Lanchantin J; Qi Y
    Bioinformatics; 2020 Dec; 36(Suppl_2):i857-i865. PubMed ID: 33381828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.
    Filatov G; Bauwens B; Kertész-Farkas A
    Bioinformatics; 2018 Oct; 34(19):3281-3288. PubMed ID: 29741583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.