BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28541439)

  • 1. The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals.
    Fort P; Blangy A
    Genome Biol Evol; 2017 Jun; 9(6):1471-1486. PubMed ID: 28541439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the Rho family of ras-like GTPases in eukaryotes.
    Boureux A; Vignal E; Faure S; Fort P
    Mol Biol Evol; 2007 Jan; 24(1):203-16. PubMed ID: 17035353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dbl family RhoGEFs in cancer: different roles and targeting strategies.
    Chen XY; Cheng AY; Wang ZY; Jin JM; Lin JY; Wang B; Guan YY; Zhang H; Jiang YX; Luan X; Zhang LJ
    Biochem Pharmacol; 2024 May; 223():116141. PubMed ID: 38499108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the Dbl and dock-family RhoGEFs: a yeast-based assay to identify cell-active inhibitors of Rho-controlled pathways.
    Blangy A; Fort P
    Enzymes; 2013; 33 Pt A():169-91. PubMed ID: 25033805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogeny of the CDC25 homology domain reveals rapid differentiation of Ras pathways between early animals and fungi.
    van Dam TJ; Rehmann H; Bos JL; Snel B
    Cell Signal; 2009 Nov; 21(11):1579-85. PubMed ID: 19567266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease.
    Cook DR; Rossman KL; Der CJ
    Oncogene; 2014 Jul; 33(31):4021-35. PubMed ID: 24037532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oncogenic Dbl, Cdc42, and p21-activated kinase form a ternary signaling intermediate through the minimum interactive domains.
    Wang L; Zhu K; Zheng Y
    Biochemistry; 2004 Nov; 43(46):14584-93. PubMed ID: 15544329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the molecular and functional basis of Dbl family proteins: a novel systematic approach toward classification of selective activation of the Rho family proteins.
    Jaiswal M; Dvorsky R; Ahmadian MR
    J Biol Chem; 2013 Feb; 288(6):4486-500. PubMed ID: 23255595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rho GTPase signaling in Dictyostelium discoideum: insights from the genome.
    Vlahou G; Rivero F
    Eur J Cell Biol; 2006 Sep; 85(9-10):947-59. PubMed ID: 16762450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates.
    Brunet FG; Volff JN; Schartl M
    Genome Biol Evol; 2016 Jun; 8(5):1600-13. PubMed ID: 27260203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis reveals the functional and expressional correlation between RhoGAP and RhoGEF in mouse.
    Gai Z; Zhao J
    Genomics; 2020 Mar; 112(2):1694-1706. PubMed ID: 31629877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial RhoGEFs: A systematic analysis of their expression profiles in VEGF-stimulated and tumor endothelial cells.
    Hernández-García R; Iruela-Arispe ML; Reyes-Cruz G; Vázquez-Prado J
    Vascul Pharmacol; 2015 Nov; 74():60-72. PubMed ID: 26471833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution and phylogeny of the corticotropin-releasing factor (CRF) family of peptides: expansion and specialization in the vertebrates.
    Lovejoy DA; de Lannoy L
    J Chem Neuroanat; 2013 Dec; 54():50-6. PubMed ID: 24076419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and computational simulation of human Syx, a RhoGEF implicated in glioblastoma.
    Boyd RJ; Olson TL; Zook JD; Stein D; Aceves M; Lin WH; Craciunescu FM; Hansen DT; Anastasiadis PZ; Singharoy A; Fromme P
    FASEB J; 2022 Jul; 36(7):e22378. PubMed ID: 35639414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Sec14-like domain of Dbl family exchange factors in the regulation of Rho family GTPases in different subcellular sites.
    Ueda S; Kataoka T; Satoh T
    Cell Signal; 2004 Aug; 16(8):899-906. PubMed ID: 15157669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rho GTPases: deciphering the evolutionary history of a complex protein family.
    Eliáš M; Klimeš V
    Methods Mol Biol; 2012; 827():13-34. PubMed ID: 22144265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary history of phosphatidylinositol- 3-kinases: ancestral origin in eukaryotes and complex duplication patterns.
    Philippon H; Brochier-Armanet C; Perrière G
    BMC Evol Biol; 2015 Oct; 15():226. PubMed ID: 26482564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligomerization of DH domain is essential for Dbl-induced transformation.
    Zhu K; Debreceni B; Bi F; Zheng Y
    Mol Cell Biol; 2001 Jan; 21(2):425-37. PubMed ID: 11134331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catching Functional Modes and Structural Communication in Dbl Family Rho Guanine Nucleotide Exchange Factors.
    Raimondi F; Felline A; Fanelli F
    J Chem Inf Model; 2015 Sep; 55(9):1878-93. PubMed ID: 26322553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation.
    Finn RN; Chauvigné F; Hlidberg JB; Cutler CP; Cerdà J
    PLoS One; 2014; 9(11):e113686. PubMed ID: 25426855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.