These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 28541602)

  • 1. Three-dimensional printing in cardiology: Current applications and future challenges.
    Luo H; Meyer-Szary J; Wang Z; Sabiniewicz R; Liu Y
    Cardiol J; 2017; 24(4):436-444. PubMed ID: 28541602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual medicine: Utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation.
    Shinbane JS; Saxon LA
    J Cardiovasc Comput Tomogr; 2018; 12(1):16-27. PubMed ID: 29198733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Printing: An Enabling Technology for IR.
    Sheth R; Balesh ER; Zhang YS; Hirsch JA; Khademhosseini A; Oklu R
    J Vasc Interv Radiol; 2016 Jun; 27(6):859-65. PubMed ID: 27117948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac 3D Printing and its Future Directions.
    Vukicevic M; Mosadegh B; Min JK; Little SH
    JACC Cardiovasc Imaging; 2017 Feb; 10(2):171-184. PubMed ID: 28183437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses.
    Ripley B; Levin D; Kelil T; Hermsen JL; Kim S; Maki JH; Wilson GJ
    J Magn Reson Imaging; 2017 Mar; 45(3):635-645. PubMed ID: 27875009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy.
    Tam MD; Laycock SD; Brown JR; Jakeways M
    J Endovasc Ther; 2013 Dec; 20(6):863-7. PubMed ID: 24325705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional printed models in congenital heart disease.
    Cantinotti M; Valverde I; Kutty S
    Int J Cardiovasc Imaging; 2017 Jan; 33(1):137-144. PubMed ID: 27677762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience.
    Schmauss D; Haeberle S; Hagl C; Sodian R
    Eur J Cardiothorac Surg; 2015 Jun; 47(6):1044-52. PubMed ID: 25161184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of three-dimensional printing technology in urological practice.
    Youssef RF; Spradling K; Yoon R; Dolan B; Chamberlin J; Okhunov Z; Clayman R; Landman J
    BJU Int; 2015 Nov; 116(5):697-702. PubMed ID: 26010346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional Printing and 3D Slicer: Powerful Tools in Understanding and Treating Structural Lung Disease.
    Cheng GZ; San Jose Estepar R; Folch E; Onieva J; Gangadharan S; Majid A
    Chest; 2016 May; 149(5):1136-42. PubMed ID: 26976347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples.
    Abudayyeh I; Gordon B; Ansari MM; Jutzy K; Stoletniy L; Hilliard A
    J Interv Cardiol; 2018 Jun; 31(3):375-383. PubMed ID: 28948646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced technology in interventional cardiology: A roadmap for the future of precision coronary interventions.
    Dugas CM; Schussler JM
    Trends Cardiovasc Med; 2016 Jul; 26(5):466-73. PubMed ID: 27020905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children.
    Zuniga JM; Carson AM; Peck JM; Kalina T; Srivastava RM; Peck K
    Prosthet Orthot Int; 2017 Apr; 41(2):205-209. PubMed ID: 27117013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printing and the effect on medical costs: a new era?
    Choonara YE; du Toit LC; Kumar P; Kondiah PP; Pillay V
    Expert Rev Pharmacoecon Outcomes Res; 2016; 16(1):23-32. PubMed ID: 26817398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Printing for Procedure Rehearsal/Simulation/Planning in Interventional Radiology.
    Chang D; Tummala S; Sotero D; Tong E; Mustafa L; Mustafa M; Browne WF; Winokur RS
    Tech Vasc Interv Radiol; 2019 Mar; 22(1):14-20. PubMed ID: 30765070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid 3D printing: a game-changer in personalized cardiac medicine?
    Kurup HK; Samuel BP; Vettukattil JJ
    Expert Rev Cardiovasc Ther; 2015 Dec; 13(12):1281-4. PubMed ID: 26465262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interobserver variability in physician-modified endograft planning by comparison with a three-dimensional printed aortic model.
    Koleilat I; Jaeggli M; Ewing JA; Androes M; Simionescu DT; Eidt J
    J Vasc Surg; 2016 Dec; 64(6):1789-1796. PubMed ID: 26607872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printing: technologies, applications, and limitations in neurosurgery.
    Pucci JU; Christophe BR; Sisti JA; Connolly ES
    Biotechnol Adv; 2017 Sep; 35(5):521-529. PubMed ID: 28552791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical Applications of 3-Dimensional Printing Technology in Hip Joint.
    Xia RZ; Zhai ZJ; Chang YY; Li HW
    Orthop Surg; 2019 Aug; 11(4):533-544. PubMed ID: 31321905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional printing and virtual surgery for congenital heart procedural planning.
    Moore RA; Riggs KW; Kourtidou S; Schneider K; Szugye N; Troja W; D'Souza G; Rattan M; Bryant R; Taylor MD; Morales DLS
    Birth Defects Res; 2018 Aug; 110(13):1082-1090. PubMed ID: 30079634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.