These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28541794)

  • 21. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size.
    Hua G; Reckhow DA
    Environ Sci Technol; 2007 May; 41(9):3309-15. PubMed ID: 17539542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.
    Li WT; Jin J; Li Q; Wu CF; Lu H; Zhou Q; Li AM
    Water Res; 2016 Apr; 93():1-9. PubMed ID: 26874469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trihalomethanes in Water Supply System and Water Distribution Networks.
    Sriboonnak S; Induvesa P; Wattanachira S; Rakruam P; Siyasukh A; Pumas C; Wongrueng A; Khan E
    Int J Environ Res Public Health; 2021 Aug; 18(17):. PubMed ID: 34501655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular size distribution of natural organic matter in raw and drinking waters.
    Nissinen TK; Miettinen IT; Martikainen PJ; Vartiainen T
    Chemosphere; 2001 Nov; 45(6-7):865-73. PubMed ID: 11695607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of NOM molecular size on iodo-trihalomethane formation during chlorination and chloramination.
    Zhang J; Chen DD; Li L; Li WW; Mu Y; Yu HQ
    Water Res; 2016 Oct; 102():533-541. PubMed ID: 27423047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-spectral characterization of natural organic matter (NOM) from Manitoba surface waters using high performance size exclusion chromatography (HPSEC).
    Brezinski K; Gorczyca B
    Chemosphere; 2019 Jun; 225():53-64. PubMed ID: 30861383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combination of ferric and MIEX for the treatment of a humic rich water.
    Fearing DA; Banks J; Guyetand S; Monfort Eroles C; Jefferson B; Wilson D; Hillis P; Campbell AT; Parsons SA
    Water Res; 2004 May; 38(10):2551-8. PubMed ID: 15159158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study of the treatment techniques for controlling THM-precursors in raw and drinking water.
    Gawandi VB; Sawant AD
    J Environ Sci Eng; 2007 Oct; 49(4):283-6. PubMed ID: 18476376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insight into changes during coagulation in NOM reactivity for trihalomethanes and haloacetic acids formation.
    Tubić A; Agbaba J; Dalmacija B; Molnar J; Maletić S; Watson M; Perović SU
    J Environ Manage; 2013 Mar; 118():153-60. PubMed ID: 23428464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occurrence and simulation of trihalomethanes in swimming pool water: A simple prediction method based on DOC and mass balance.
    Peng D; Saravia F; Abbt-Braun G; Horn H
    Water Res; 2016 Jan; 88():634-642. PubMed ID: 26575472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trihalomethane formation potential in treated water supplies in urban metro city.
    Hasan A; Thacker NP; Bassin J
    Environ Monit Assess; 2010 Sep; 168(1-4):489-97. PubMed ID: 19680752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TiO2 photocatalysis of natural organic matter in surface water: impact on trihalomethane and haloacetic acid formation potential.
    Liu S; Lim M; Fabris R; Chow C; Drikas M; Amal R
    Environ Sci Technol; 2008 Aug; 42(16):6218-23. PubMed ID: 18767690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of trihalomethanes of dissolved organic matter fractions in reservoir and canal waters.
    Musikavong C; Srimuang K; Tachapattaworakul Suksaroj T; Suksaroj C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jul; 51(9):782-91. PubMed ID: 27166524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of NOM in the Han River and evaluation of treatability using UF-NF membrane.
    Kim MH; Yu MJ
    Environ Res; 2005 Jan; 97(1):116-23. PubMed ID: 15476741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors.
    Boyer TH; Singer PC
    Water Res; 2005 Apr; 39(7):1265-76. PubMed ID: 15862326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights.
    Korshin G; Chow CW; Fabris R; Drikas M
    Water Res; 2009 Apr; 43(6):1541-8. PubMed ID: 19131089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of trihalomethane (THM) formation via chlorination of the water from Dongjiang River (source water for Hong Kong's drinking water).
    Hong HC; Liang Y; Han BP; Mazumder A; Wong MH
    Sci Total Environ; 2007 Oct; 385(1-3):48-54. PubMed ID: 17716706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.
    Papageorgiou A; Papadakis N; Voutsa D
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1841-51. PubMed ID: 26400244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of natural organic matter (NOM) from water by ion exchange - A review.
    Levchuk I; Rueda Márquez JJ; Sillanpää M
    Chemosphere; 2018 Feb; 192():90-104. PubMed ID: 29100126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.