These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28541892)

  • 1. Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy.
    Kar SS; Maity SP
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):608-618. PubMed ID: 28541892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and classification of retinal lesions for grading of diabetic retinopathy.
    Usman Akram M; Khalid S; Tariq A; Khan SA; Azam F
    Comput Biol Med; 2014 Feb; 45():161-71. PubMed ID: 24480176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening.
    Seoud L; Hurtut T; Chelbi J; Cheriet F; Langlois JM
    IEEE Trans Med Imaging; 2016 Apr; 35(4):1116-26. PubMed ID: 26701180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Points of interest and visual dictionaries for automatic retinal lesion detection.
    Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
    Akyol K; Şen B; Bayır Ş
    Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy.
    Akram MU; Tariq A; Anjum MA; Javed MY
    Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy.
    Akram UM; Khan SA
    J Med Syst; 2012 Oct; 36(5):3151-62. PubMed ID: 22090037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis.
    Gegundez-Arias ME; Marin D; Ponte B; Alvarez F; Garrido J; Ortega C; Vasallo MJ; Bravo JM
    Comput Biol Med; 2017 Sep; 88():100-109. PubMed ID: 28711766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation.
    Long S; Huang X; Chen Z; Pardhan S; Zheng D
    Biomed Res Int; 2019; 2019():3926930. PubMed ID: 30809539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
    S K S; P A
    J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep image mining for diabetic retinopathy screening.
    Quellec G; Charrière K; Boudi Y; Cochener B; Lamard M
    Med Image Anal; 2017 Jul; 39():178-193. PubMed ID: 28511066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy.
    Sil Kar S; Maity SP
    Comput Methods Programs Biomed; 2016 Sep; 133():111-132. PubMed ID: 27393804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-segmentation of retinal image lesions in diabetic retinopathy using energy-based fuzzy C-Means clustering (EFM-FCM).
    Naz H; Nijhawan R; Ahuja NJ; Saba T; Alamri FS; Rehman A
    Microsc Res Tech; 2024 Jan; 87(1):78-94. PubMed ID: 37681440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images.
    Adal KM; van Etten PG; Martinez JP; Rouwen KW; Vermeer KA; van Vliet LJ
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1382-1390. PubMed ID: 28922110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetic retinopathy techniques in retinal images: A review.
    Salamat N; Missen MMS; Rashid A
    Artif Intell Med; 2019 Jun; 97():168-188. PubMed ID: 30448367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effective fovea detection and automatic assessment of diabetic maculopathy in color fundus images.
    Medhi JP; Dandapat S
    Comput Biol Med; 2016 Jul; 74():30-44. PubMed ID: 27174686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optic disc detection in retinal fundus images using gravitational law-based edge detection.
    Alshayeji M; Al-Roomi SA; Abed S
    Med Biol Eng Comput; 2017 Jun; 55(6):935-948. PubMed ID: 27638111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images.
    ElTanboly A; Ismail M; Shalaby A; Switala A; El-Baz A; Schaal S; Gimel'farb G; El-Azab M
    Med Phys; 2017 Mar; 44(3):914-923. PubMed ID: 28035657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.