These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28541915)

  • 1. Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant.
    Mastinu E; Doguet P; Botquin Y; Hakansson B; Ortiz-Catalan M
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):867-877. PubMed ID: 28541915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs.
    Ortiz-Catalan M; Håkansson B; Brånemark R
    Sci Transl Med; 2014 Oct; 6(257):257re6. PubMed ID: 25298322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand.
    Mastinu E; Clemente F; Sassu P; Aszmann O; Brånemark R; Håkansson B; Controzzi M; Cipriani C; Ortiz-Catalan M
    J Neuroeng Rehabil; 2019 Apr; 16(1):49. PubMed ID: 30975158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor unit drive: a neural interface for real-time upper limb prosthetic control.
    Twardowski MD; Roy SH; Li Z; Contessa P; De Luca G; Kline JC
    J Neural Eng; 2019 Feb; 16(1):016012. PubMed ID: 30524105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended home use of an advanced osseointegrated prosthetic arm improves function, performance, and control efficiency.
    Osborn LE; Moran CW; Johannes MS; Sutton EE; Wormley JM; Dohopolski C; Nordstrom MJ; Butkus JA; Chi A; Pasquina PF; Cohen AB; Wester BA; Fifer MS; Armiger RS
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33524965
    [No Abstract]   [Full Text] [Related]  

  • 6. An embedded controller for a 7-degree of freedom prosthetic arm.
    Tenore F; Armiger RS; Vogelstein RJ; Wenstrand DS; Harshbarger SD; Englehart K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():185-8. PubMed ID: 19162624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
    Segil JL; Controzzi M; Weir RF; Cipriani C
    J Rehabil Res Dev; 2014; 51(9):1439-54. PubMed ID: 25803683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attachment of a Myoelectric Prosthesis After Transulnar Osseointegration Implantation: A 2-Patient Case Study.
    Jaime KM; Reif TJ; Kafedzic H; Garrison G; Dhawan J; Rozbruch SR
    JBJS Case Connect; 2021 Dec; 11(4):. PubMed ID: 34910710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Prosthetic Control Based on Myoelectric Pattern Recognition via Wavelet-Based De-Noising.
    Maier J; Naber A; Ortiz-Catalan M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):506-514. PubMed ID: 29432116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online electromyographic control of a robotic prosthesis.
    Shenoy P; Miller KJ; Crawford B; Rao RN
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1128-35. PubMed ID: 18334405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rechargeable wireless EMG sensor for prosthetic control.
    Lichter PA; Lange EH; Riehle TH; Anderson SM; Hedin DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5074-6. PubMed ID: 21095801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioelectric neural interface towards intuitive prosthetic control for amputees.
    Nguyen AT; Xu J; Jiang M; Luu DK; Wu T; Tam WK; Zhao W; Drealan MW; Overstreet CK; Zhao Q; Cheng J; Keefer EW; Yang Z
    J Neural Eng; 2020 Nov; 17(6):. PubMed ID: 33091891
    [No Abstract]   [Full Text] [Related]  

  • 14. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.
    Benatti S; Milosevic B; Farella E; Gruppioni E; Benini L
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.
    Gonzalez-Vargas J; Dosen S; Amsuess S; Yu W; Farina D
    PLoS One; 2015; 10(6):e0127528. PubMed ID: 26069961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring at-home prosthesis control improvements through real-time data logging.
    Osborn LE; Moran CW; Dodd LD; Sutton EE; Norena Acosta N; Wormley JM; Pyles CO; Gordge KD; Nordstrom MJ; Butkus JA; Forsberg JA; Pasquina PF; Fifer MS; Armiger RS
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35523131
    [No Abstract]   [Full Text] [Related]  

  • 18. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling.
    Sartori M; Durandau G; Došen S; Farina D
    J Neural Eng; 2018 Dec; 15(6):066026. PubMed ID: 30229745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel postural control algorithm for control of multifunctional myoelectric prosthetic hands.
    Segil JL; Weir RF
    J Rehabil Res Dev; 2015; 52(4):449-66. PubMed ID: 26348320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.