These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28542178)

  • 1. Uncovering direct and indirect molecular determinants of chromatin loops using a computational integrative approach.
    Mourad R; Li L; Cuvier O
    PLoS Comput Biol; 2017 May; 13(5):e1005538. PubMed ID: 28542178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
    Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X
    Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of high-resolution 3D intrachromosomal interactions aided by Bayesian network modeling.
    Zhang X; Branciamore S; Gogoshin G; Rodin AS; Riggs AD
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10359-E10368. PubMed ID: 29133398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Elife; 2018 May; 7():. PubMed ID: 29757144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Epigenetics Chromatin; 2020 Jul; 13(1):30. PubMed ID: 32680543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem CTCF sites function as insulators to balance spatial chromatin contacts and topological enhancer-promoter selection.
    Jia Z; Li J; Ge X; Wu Y; Guo Y; Wu Q
    Genome Biol; 2020 Mar; 21(1):75. PubMed ID: 32293525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins.
    Comoglio F; Schlumpf T; Schmid V; Rohs R; Beisel C; Paro R
    Cell Rep; 2015 May; 11(5):821-34. PubMed ID: 25921534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation.
    Kuang S; Wang L
    J Comput Biol; 2021 Feb; 28(2):133-145. PubMed ID: 33232622
    [No Abstract]   [Full Text] [Related]  

  • 9. TAD-free analysis of architectural proteins and insulators.
    Mourad R; Cuvier O
    Nucleic Acids Res; 2018 Mar; 46(5):e27. PubMed ID: 29272504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling.
    Tark-Dame M; Jerabek H; Manders EM; van der Wateren IM; Heermann DW; van Driel R
    PLoS Comput Biol; 2014 Oct; 10(10):e1003877. PubMed ID: 25299688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions.
    Attou A; Zülske T; Wedemann G
    Biophys J; 2022 Dec; 121(24):4788-4799. PubMed ID: 36325618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation.
    Mourad R; Cuvier O
    PLoS Comput Biol; 2016 May; 12(5):e1004908. PubMed ID: 27203237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZNF143 deletion alters enhancer/promoter looping and CTCF/cohesin geometry.
    Zhang M; Huang H; Li J; Wu Q
    Cell Rep; 2024 Jan; 43(1):113663. PubMed ID: 38206813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZNF143 is a regulator of chromatin loop.
    Wen Z; Huang ZT; Zhang R; Peng C
    Cell Biol Toxicol; 2018 Dec; 34(6):471-478. PubMed ID: 30120652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural basis for cohesin-CTCF-anchored loops.
    Li Y; Haarhuis JHI; Sedeño Cacciatore Á; Oldenkamp R; van Ruiten MS; Willems L; Teunissen H; Muir KW; de Wit E; Rowland BD; Panne D
    Nature; 2020 Feb; 578(7795):472-476. PubMed ID: 31905366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide and parental allele-specific analysis of CTCF and cohesin DNA binding in mouse brain reveals a tissue-specific binding pattern and an association with imprinted differentially methylated regions.
    Prickett AR; Barkas N; McCole RB; Hughes S; Amante SM; Schulz R; Oakey RJ
    Genome Res; 2013 Oct; 23(10):1624-35. PubMed ID: 23804403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture.
    Cubeñas-Potts C; Rowley MJ; Lyu X; Li G; Lei EP; Corces VG
    Nucleic Acids Res; 2017 Feb; 45(4):1714-1730. PubMed ID: 27899590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent evidence that TADs and chromatin loops are dynamic structures.
    Hansen AS; Cattoglio C; Darzacq X; Tjian R
    Nucleus; 2018 Jan; 9(1):20-32. PubMed ID: 29077530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation.
    Kubo N; Ishii H; Xiong X; Bianco S; Meitinger F; Hu R; Hocker JD; Conte M; Gorkin D; Yu M; Li B; Dixon JR; Hu M; Nicodemi M; Zhao H; Ren B
    Nat Struct Mol Biol; 2021 Feb; 28(2):152-161. PubMed ID: 33398174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.