BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 28542190)

  • 1. Polymorphisms in the yeast galactose sensor underlie a natural continuum of nutrient-decision phenotypes.
    Lee KB; Wang J; Palme J; Escalante-Chong R; Hua B; Springer M
    PLoS Genet; 2017 May; 13(5):e1006766. PubMed ID: 28542190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational analysis of GAL pathway pinpoints mechanisms underlying natural variation.
    Hong J; Palme J; Hua B; Springer M
    PLoS Comput Biol; 2021 Sep; 17(9):e1008691. PubMed ID: 34570755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in the modality of a yeast signaling pathway is mediated by a single regulator.
    Palme J; Wang J; Springer M
    Elife; 2021 Aug; 10():. PubMed ID: 34369878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae.
    Kar RK; Qureshi MT; DasAdhikari AK; Zahir T; Venkatesh KV; Bhat PJ
    FEBS J; 2014 Apr; 281(7):1798-817. PubMed ID: 24785355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural variation in preparation for nutrient depletion reveals a cost-benefit tradeoff.
    Wang J; Atolia E; Hua B; Savir Y; Escalante-Chong R; Springer M
    PLoS Biol; 2015 Jan; 13(1):e1002041. PubMed ID: 25626068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replacement of a conserved tyrosine by tryptophan in Gal3p of Saccharomyces cerevisiae reduces constitutive activity: implications for signal transduction in the GAL regulon.
    Lakshminarasimhan A; Bhat PJ
    Mol Genet Genomics; 2005 Nov; 274(4):384-93. PubMed ID: 16160853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perturbation of the interaction between Gal4p and Gal80p of the Saccharomyces cerevisiae GAL switch results in altered responses to galactose and glucose.
    Das Adhikari AK; Qureshi MT; Kar RK; Bhat PJ
    Mol Microbiol; 2014 Oct; 94(1):202-17. PubMed ID: 25135592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intragenic suppression of Gal3C interaction with Gal80 in the Saccharomyces cerevisiae GAL gene switch.
    Diep CQ; Peng G; Bewley M; Pilauri V; Ropson I; Hopper JE
    Genetics; 2006 Jan; 172(1):77-87. PubMed ID: 16219783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p.
    Suzuki-Fujimoto T; Fukuma M; Yano KI; Sakurai H; Vonika A; Johnston SA; Fukasawa T
    Mol Cell Biol; 1996 May; 16(5):2504-8. PubMed ID: 8628318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-association of the Gal4 inhibitor protein Gal80 is impaired by Gal3: evidence for a new mechanism in the GAL gene switch.
    Egriboz O; Goswami S; Tao X; Dotts K; Schaeffer C; Pilauri V; Hopper JE
    Mol Cell Biol; 2013 Sep; 33(18):3667-74. PubMed ID: 23858060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A living vector field reveals constraints on galactose network induction in yeast.
    Stockwell SR; Rifkin SA
    Mol Syst Biol; 2017 Jan; 13(1):908. PubMed ID: 28137775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid GAL gene switch of Saccharomyces cerevisiae depends on nuclear Gal3, not nucleocytoplasmic trafficking of Gal3 and Gal80.
    Egriboz O; Jiang F; Hopper JE
    Genetics; 2011 Nov; 189(3):825-36. PubMed ID: 21890741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae.
    Wightman R; Bell R; Reece RJ
    Eukaryot Cell; 2008 Dec; 7(12):2061-8. PubMed ID: 18952899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A yeast catabolic enzyme controls transcriptional memory.
    Zacharioudakis I; Gligoris T; Tzamarias D
    Curr Biol; 2007 Dec; 17(23):2041-6. PubMed ID: 17997309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GAL3 gene product is required for maintenance of the induced state of the GAL cluster genes in Saccharomyces cerevisiae.
    Nogi Y
    J Bacteriol; 1986 Jan; 165(1):101-6. PubMed ID: 3510183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Conformations of Gal3 Protein Drive the Galactose-Induced Allosteric Activation of the GAL Genetic Switch of Saccharomyces cerevisiae.
    Kar RK; Kharerin H; Padinhateeri R; Bhat PJ
    J Mol Biol; 2017 Jan; 429(1):158-176. PubMed ID: 27913116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive Feedback Genetic Circuit Incorporating a Constitutively Active Mutant Gal3 into Yeast GAL Induction System.
    Ryo S; Ishii J; Matsuno T; Nakamura Y; Matsubara D; Tominaga M; Kondo A
    ACS Synth Biol; 2017 Jun; 6(6):928-935. PubMed ID: 28324652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay of a ligand sensor and an enzyme in controlling expression of the Saccharomyces cerevisiae GAL genes.
    Abramczyk D; Holden S; Page CJ; Reece RJ
    Eukaryot Cell; 2012 Mar; 11(3):334-42. PubMed ID: 22210830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of inducer formation in gal3 mutants of the yeast galactose system is independent of normal galactose metabolism and mitochondrial respiratory function.
    Bhat PJ; Hopper JE
    Genetics; 1991 Jun; 128(2):233-9. PubMed ID: 2071013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vectors allowing amplified expression of the Saccharomyces cerevisiae Gal3p-Gal80p-Gal4p transcription switch: applications to galactose-regulated high-level production of proteins.
    Sil AK; Xin P; Hopper JE
    Protein Expr Purif; 2000 Mar; 18(2):202-12. PubMed ID: 10686151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.