These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 28542212)
1. Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior. Die JV; Arora R; Rowland LJ PLoS One; 2017; 12(5):e0177389. PubMed ID: 28542212 [TBL] [Abstract][Full Text] [Related]
2. The relationship of cold acclimation and extracellular ice formation to winter thermonasty in two Rhododendron species and their F Arora R; Krebs SL; Wisniewski ME Am J Bot; 2021 Oct; 108(10):1946-1956. PubMed ID: 34687044 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Wei H; Dhanaraj AL; Rowland LJ; Fu Y; Krebs SL; Arora R Planta; 2005 Jun; 221(3):406-16. PubMed ID: 15933892 [TBL] [Abstract][Full Text] [Related]
4. Is expression of aquaporins (plasma membrane intrinsic protein 2s, PIP2s) associated with thermonasty (leaf-curling) in Rhododendron? Chen K; Wang X; Fessehaie A; Yin Y; Wang X; Arora R J Plant Physiol; 2013 Nov; 170(16):1447-54. PubMed ID: 23850223 [TBL] [Abstract][Full Text] [Related]
5. Rhododendron catawbiense plasma membrane intrinsic proteins are aquaporins, and their over-expression compromises constitutive freezing tolerance and cold acclimation ability of transgenic Arabidopsis plants. Peng Y; Arora R; Li G; Wang X; Fessehaie A Plant Cell Environ; 2008 Sep; 31(9):1275-89. PubMed ID: 18518915 [TBL] [Abstract][Full Text] [Related]
6. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Peng Y; Reyes JL; Wei H; Yang Y; Karlson D; Covarrubias AA; Krebs SL; Fessehaie A; Arora R Physiol Plant; 2008 Dec; 134(4):583-97. PubMed ID: 19000195 [TBL] [Abstract][Full Text] [Related]
7. Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies. Wei H; Dhanaraj AL; Arora R; Rowland LJ; Fu Y; Sun L Plant Cell Environ; 2006 Apr; 29(4):558-70. PubMed ID: 17080607 [TBL] [Abstract][Full Text] [Related]
9. A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.). Bertrand A; Bipfubusa M; Castonguay Y; Rocher S; Szopinska-Morawska A; Papadopoulos Y; Renaut J BMC Plant Biol; 2016 Mar; 16():65. PubMed ID: 26965047 [TBL] [Abstract][Full Text] [Related]
10. Dehydrin variability among rhododendron species: a 25-kDa dehydrin is conserved and associated with cold acclimation across diverse species. Marian CO; Krebs SL; Arora R New Phytol; 2004 Mar; 161(3):773-780. PubMed ID: 33873716 [TBL] [Abstract][Full Text] [Related]
11. Factors affecting freezing tolerance: a comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens. Liu B; Wang XY; Cao Y; Arora R; Zhou H; Xia YP Plant J; 2020 Sep; 103(6):2279-2300. PubMed ID: 32593208 [TBL] [Abstract][Full Text] [Related]
12. The effects of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions. Rapacz M; Wolanin B; Hura K; Tyrka M Ann Bot; 2008 Apr; 101(5):689-99. PubMed ID: 18245808 [TBL] [Abstract][Full Text] [Related]
13. Infrared thermography of in situ natural freezing and mechanism of winter-thermonasty in Rhododendron maximum. Arora R; Wisniewski M; Tuong T; Livingston D Physiol Plant; 2023 Mar; 175(2):e13876. PubMed ID: 36808742 [TBL] [Abstract][Full Text] [Related]
14. A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Gharechahi J; Alizadeh H; Naghavi MR; Sharifi G Mol Biol Rep; 2014 Jun; 41(6):3897-905. PubMed ID: 24535272 [TBL] [Abstract][Full Text] [Related]
15. Proteome analysis reveals a systematic response of cold-acclimated seedlings of an exotic mangrove plant Sonneratia apetala to chilling stress. Shen ZJ; Qin YY; Luo MR; Li Z; Ma DN; Wang WH; Zheng HL J Proteomics; 2021 Sep; 248():104349. PubMed ID: 34411764 [TBL] [Abstract][Full Text] [Related]
16. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Zuther E; Schulz E; Childs LH; Hincha DK Plant Cell Environ; 2012 Oct; 35(10):1860-78. PubMed ID: 22512351 [TBL] [Abstract][Full Text] [Related]
17. Changes in protein abundance and activity involved in freezing tolerance acquisition in winter barley (Hordeum vulgare L.). Gołębiowska-Pikania G; Kopeć P; Surówka E; Krzewska M; Dubas E; Nowicka A; Rapacz M; Wójcik-Jagła M; Malaga S; Żur I J Proteomics; 2017 Oct; 169():58-72. PubMed ID: 28847648 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetic analysis and seasonal cold acclimation-associated expression of early light-induced protein genes of Rhododendron catawbiense. Peng Y; Lin W; Wei H; Krebs SL; Arora R Physiol Plant; 2008 Jan; 132(1):44-52. PubMed ID: 18251869 [TBL] [Abstract][Full Text] [Related]
19. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. Miki Y; Takahashi D; Kawamura Y; Uemura M J Proteomics; 2019 Apr; 197():71-81. PubMed ID: 30447334 [TBL] [Abstract][Full Text] [Related]
20. Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance. Bocian A; Kosmala A; Rapacz M; Jurczyk B; Marczak Ł; Zwierzykowski Z J Plant Physiol; 2011 Jul; 168(11):1271-9. PubMed ID: 21489653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]