These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28542380)

  • 1. More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster.
    Shiehzadegan S; Le Vinh Thuy J; Szabla N; Angilletta MJ; VandenBrooks JM
    PLoS One; 2017; 12(5):e0177827. PubMed ID: 28542380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A positive genetic correlation between hypoxia tolerance and heat tolerance supports a controversial theory of heat stress.
    Teague C; Youngblood JP; Ragan K; Angilletta MJ; VandenBrooks JM
    Biol Lett; 2017 Nov; 13(11):. PubMed ID: 29118239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of developmental plasticity on heat tolerance may be mediated by changes in cell size in Drosophila melanogaster.
    Verspagen N; Leiva FP; Janssen IM; Verberk WCEP
    Insect Sci; 2020 Dec; 27(6):1244-1256. PubMed ID: 31829515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia causes woodlice (Porcellio scaber) to select lower temperatures and impairs their thermal performance and heat tolerance.
    Antoł A; Rojek W; Singh S; Piekarski D; Czarnoleski M
    PLoS One; 2019; 14(8):e0220647. PubMed ID: 31369635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.
    Verberk WC; Overgaard J; Ern R; Bayley M; Wang T; Boardman L; Terblanche JS
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Feb; 192():64-78. PubMed ID: 26506130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single and multigenerational responses of body mass to atmospheric oxygen concentrations in Drosophila melanogaster : evidence for roles of plasticity and evolution.
    Klok CJ; Hubb AJ; Harrison JF
    J Evol Biol; 2009 Dec; 22(12):2496-504. PubMed ID: 19878502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of oxygen concentration and pressure on Drosophila melanogaster: oxidative stress, mitochondrial activity, and survivorship.
    Bosco G; Clamer M; Messulam E; Dare C; Yang Z; Zordan M; Reggiani C; Hu Q; Megighian A
    Arch Insect Biochem Physiol; 2015 Apr; 88(4):222-34. PubMed ID: 25529352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen supply limits the heat tolerance of lizard embryos.
    Smith C; Telemeco RS; Angilletta MJ; VandenBrooks JM
    Biol Lett; 2015 Apr; 11(4):20150113. PubMed ID: 25926695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and Oxygen Flight Sensitivity in Ageing
    Szlachcic E; Czarnoleski M
    Biology (Basel); 2021 Sep; 10(9):. PubMed ID: 34571738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster.
    Frazier MR; Woods HA; Harrison JF
    Physiol Biochem Zool; 2001; 74(5):641-50. PubMed ID: 11517449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drosophila melanogaster locomotion in cold thin air.
    Dillon ME; Frazier MR
    J Exp Biol; 2006 Jan; 209(Pt 2):364-71. PubMed ID: 16391358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen supply limits the chronic heat tolerance of locusts during the first instar only.
    Youngblood JP; VandenBrooks JM; Babarinde O; Donnay ME; Elliott DB; Fredette-Roman J; Angilletta MJ
    J Insect Physiol; 2020; 127():104157. PubMed ID: 33098860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance.
    Slotsbo S; Schou MF; Kristensen TN; Loeschcke V; Sørensen JG
    J Exp Biol; 2016 Sep; 219(Pt 17):2726-32. PubMed ID: 27353229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dropping like flies: environmentally induced impairment and protection of locomotor performance in adult Drosophila melanogaster.
    Roberts SP; Marden JH; Feder ME
    Physiol Biochem Zool; 2003; 76(5):615-21. PubMed ID: 14671709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of within-generation thermal history on the flight performance of Ceratitis capitata: colder is better.
    Esterhuizen N; Clusella-Trullas S; van Daalen CE; Schoombie RE; Boardman L; Terblanche JS
    J Exp Biol; 2014 Oct; 217(Pt 19):3545-56. PubMed ID: 25104754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen Dependence of Flight Performance in Ageing
    Privalova V; Szlachcic E; Sobczyk Ł; Szabla N; Czarnoleski M
    Biology (Basel); 2021 Apr; 10(4):. PubMed ID: 33919761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?
    Esperk T; Kjaersgaard A; Walters RJ; Berger D; Blanckenhorn WU
    J Evol Biol; 2016 May; 29(5):900-15. PubMed ID: 26801318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor performance of Drosophila melanogaster: interactions among developmental and adult temperatures, age, and geography.
    Gibert P; Huey RB; Gilchrist GW
    Evolution; 2001 Jan; 55(1):205-9. PubMed ID: 11263741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen Limitation Does Not Drive the Decreasing Heat Tolerance of Grasshoppers during Development.
    Youngblood JP; da Silva CRB; Angilletta MJ; VandenBrooks JM
    Physiol Biochem Zool; 2019; 92(6):567-572. PubMed ID: 31567049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.