These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 28542380)
21. Ambient temperature affects free-flight performance in the fruit fly Drosophila melanogaster. Lehmann FO J Comp Physiol B; 1999 Apr; 169(3):165-71. PubMed ID: 10335614 [TBL] [Abstract][Full Text] [Related]
22. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. Overgaard J; Tomcala A; Sørensen JG; Holmstrup M; Krogh PH; Simek P; Kostál V J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492 [TBL] [Abstract][Full Text] [Related]
23. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster. Schou MF; Loeschcke V; Kristensen TN PLoS One; 2015; 10(6):e0130307. PubMed ID: 26075607 [TBL] [Abstract][Full Text] [Related]
24. The significance of spiracle conductance and spatial arrangement for flight muscle function and aerodynamic performance in flying Drosophila. Heymann N; Lehmann FO J Exp Biol; 2006 May; 209(Pt 9):1662-77. PubMed ID: 16621947 [TBL] [Abstract][Full Text] [Related]
25. Living in a trash can: turbulent convective flows impair Ortega-Jiménez VM; Combes SA J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30355810 [TBL] [Abstract][Full Text] [Related]
26. Direct and correlated effects of selection on flight after exposure to thermal stress in Drosophila melanogaster. Krebs RA; Thompson KA Genetica; 2006; 128(1-3):217-25. PubMed ID: 17028952 [TBL] [Abstract][Full Text] [Related]
27. Heat tolerance in Privalova V; Sobczyk Ł; Szlachcic E; Labecka AM; Czarnoleski M Philos Trans R Soc Lond B Biol Sci; 2024 Feb; 379(1896):20220490. PubMed ID: 38186282 [TBL] [Abstract][Full Text] [Related]
28. Acute and chronic effects of atmospheric oxygen on the feeding behavior of Drosophila melanogaster larvae. Farzin M; Albert T; Pierce N; VandenBrooks JM; Dodge T; Harrison JF J Insect Physiol; 2014 Sep; 68():23-9. PubMed ID: 25008193 [TBL] [Abstract][Full Text] [Related]
29. Different age-dependent performance in Drosophila wild-type Canton-S and the white mutant w1118 flies. Qiu S; Xiao C; Meldrum Robertson R Comp Biochem Physiol A Mol Integr Physiol; 2017 Apr; 206():17-23. PubMed ID: 28087331 [TBL] [Abstract][Full Text] [Related]
31. Evolution and development of Drosophila melanogaster under different thermal conditions affected cell sizes and sensitivity to paralyzing hypoxia. Szabla N; Maria Labecka A; Antoł A; Sobczyk Ł; Angilletta MJ; Czarnoleski M J Insect Physiol; 2024 Sep; 157():104671. PubMed ID: 38972633 [TBL] [Abstract][Full Text] [Related]
32. Metabolic and functional characterization of effects of developmental temperature in Drosophila melanogaster. Schou MF; Kristensen TN; Pedersen A; Karlsson BG; Loeschcke V; Malmendal A Am J Physiol Regul Integr Comp Physiol; 2017 Feb; 312(2):R211-R222. PubMed ID: 27927623 [TBL] [Abstract][Full Text] [Related]
33. A transcriptomics assessment of oxygen-temperature interactions reveals novel candidate genes underlying variation in thermal tolerance and survival. Boardman L; Mitchell KA; Terblanche JS; Sørensen JG J Insect Physiol; 2018 Apr; 106(Pt 3):179-188. PubMed ID: 29038013 [TBL] [Abstract][Full Text] [Related]
34. Responses of Drosophila melanogaster to atypical oxygen atmospheres. Skandalis DA; Stuart JA; Tattersall GJ J Insect Physiol; 2011 Apr; 57(4):444-51. PubMed ID: 21241703 [TBL] [Abstract][Full Text] [Related]
35. The role of experience in flight behaviour of Drosophila. Hesselberg T; Lehmann FO J Exp Biol; 2009 Oct; 212(Pt 20):3377-86. PubMed ID: 19801442 [TBL] [Abstract][Full Text] [Related]
36. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males. Folk DG; Zwollo P; Rand DM; Gilchrist GW J Exp Biol; 2006 Oct; 209(Pt 20):3964-73. PubMed ID: 17023590 [TBL] [Abstract][Full Text] [Related]
37. Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster. Schilman PE; Waters JS; Harrison JF; Lighton JR J Exp Biol; 2011 Apr; 214(Pt 8):1271-5. PubMed ID: 21430203 [TBL] [Abstract][Full Text] [Related]
38. Effects of oxygen on growth and size: synthesis of molecular, organismal, and evolutionary studies with Drosophila melanogaster. Harrison JF; Haddad GG Annu Rev Physiol; 2011; 73():95-113. PubMed ID: 20936942 [TBL] [Abstract][Full Text] [Related]
39. The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster. Heinrich EC; Farzin M; Klok CJ; Harrison JF J Exp Biol; 2011 May; 214(Pt 9):1419-27. PubMed ID: 21490250 [TBL] [Abstract][Full Text] [Related]
40. Nutritional effects on operant visual learning in Drosophila melanogaster. Xia SZ; Liu L; Feng CH; Guo AK Physiol Behav; 1997 Aug; 62(2):263-71. PubMed ID: 9251967 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]