BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28542489)

  • 41. A reciprocating twin-channel model for ABC transporters.
    Jones PM; George AM
    Q Rev Biophys; 2014 Aug; 47(3):189-220. PubMed ID: 24786414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain.
    Berger AL; Ikuma M; Welsh MJ
    Proc Natl Acad Sci U S A; 2005 Jan; 102(2):455-60. PubMed ID: 15623556
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
    Vergani P; Lockless SW; Nairn AC; Gadsby DC
    Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Q-loop disengages from the first intracellular loop during the catalytic cycle of the multidrug ABC transporter BmrA.
    Dalmas O; Orelle C; Foucher AE; Geourjon C; Crouzy S; Di Pietro A; Jault JM
    J Biol Chem; 2005 Nov; 280(44):36857-64. PubMed ID: 16107340
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystal structure of the nucleotide-binding domain of the ABC-transporter haemolysin B: identification of a variable region within ABC helical domains.
    Schmitt L; Benabdelhak H; Blight MA; Holland IB; Stubbs MT
    J Mol Biol; 2003 Jul; 330(2):333-42. PubMed ID: 12823972
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The E-helix is a central core in a conserved helical bundle involved in nucleotide binding and transmembrane domain intercalation in the ABC transporter superfamily.
    Vishwakarma P; Banerjee A; Pasrija R; Prasad R; Lynn AM
    Int J Biol Macromol; 2019 Apr; 127():95-106. PubMed ID: 30639597
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer.
    Smith PC; Karpowich N; Millen L; Moody JE; Rosen J; Thomas PJ; Hunt JF
    Mol Cell; 2002 Jul; 10(1):139-49. PubMed ID: 12150914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter.
    Procko E; Ferrin-O'Connell I; Ng SL; Gaudet R
    Mol Cell; 2006 Oct; 24(1):51-62. PubMed ID: 17018292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter.
    Hohl M; Hürlimann LM; Böhm S; Schöppe J; Grütter MG; Bordignon E; Seeger MA
    Proc Natl Acad Sci U S A; 2014 Jul; 111(30):11025-30. PubMed ID: 25030449
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Walker A lysine mutations of TAP1 and TAP2 interfere with peptide translocation but not peptide binding.
    Lapinski PE; Neubig RR; Raghavan M
    J Biol Chem; 2001 Mar; 276(10):7526-33. PubMed ID: 11099504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Boundary of the nucleotide-binding domain of Streptococcus ComA based on functional and structural analysis.
    Ishii S; Yano T; Okamoto A; Murakawa T; Hayashi H
    Biochemistry; 2013 Apr; 52(15):2545-55. PubMed ID: 23534432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploring conformational equilibria of a heterodimeric ABC transporter.
    Timachi MH; Hutter CA; Hohl M; Assafa T; Böhm S; Mittal A; Seeger MA; Bordignon E
    Elife; 2017 Jan; 6():. PubMed ID: 28051765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cryo-EM structure of the full-length WzmWzt ABC transporter required for lipid-linked O antigen transport.
    Caffalette CA; Zimmer J
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443152
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular insights into the mechanism of ATP-hydrolysis by the NBD of the ABC-transporter HlyB.
    Hanekop N; Zaitseva J; Jenewein S; Holland IB; Schmitt L
    FEBS Lett; 2006 Feb; 580(4):1036-41. PubMed ID: 16330029
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Allosteric effects of ATP binding on the nucleotide-binding domain of a heterodimeric ATP-binding cassette transporter.
    Pan X; Zhang Q; Qu S; Huang S; Wang H; Mei H
    Integr Biol (Camb); 2016 Nov; 8(11):1158-1169. PubMed ID: 27731447
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of CAPS buffer in expanding the crystallization space of the nucleotide-binding domain of the ABC transporter haemolysin B from Escherichia coli.
    Zaitseva J; Holland IB; Schmitt L
    Acta Crystallogr D Biol Crystallogr; 2004 Jun; 60(Pt 6):1076-84. PubMed ID: 15159567
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding.
    Ambudkar SV; Kim IW; Xia D; Sauna ZE
    FEBS Lett; 2006 Feb; 580(4):1049-55. PubMed ID: 16412422
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conformational change induced by ATP binding in the multidrug ATP-binding cassette transporter BmrA.
    Orelle C; Gubellini F; Durand A; Marco S; Lévy D; Gros P; Di Pietro A; Jault JM
    Biochemistry; 2008 Feb; 47(8):2404-12. PubMed ID: 18215075
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pairing of the nucleotide binding domains of the transporter associated with antigen processing.
    Lapinski PE; Miller GG; Tampé R; Raghavan M
    J Biol Chem; 2000 Mar; 275(10):6831-40. PubMed ID: 10702242
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dissociation of ATP-binding cassette nucleotide-binding domain dimers into monomers during the hydrolysis cycle.
    Zoghbi ME; Krishnan S; Altenberg GA
    J Biol Chem; 2012 Apr; 287(18):14994-5000. PubMed ID: 22403405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.