These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 28542579)

  • 1. Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack.
    Gupta S; Bhar A; Chatterjee M; Ghosh A; Das S
    PLoS One; 2017; 12(5):e0178164. PubMed ID: 28542579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1).
    Chatterjee M; Gupta S; Bhar A; Chakraborti D; Basu D; Das S
    BMC Genomics; 2014 Nov; 15(1):949. PubMed ID: 25363865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusarium oxysporum f.sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.).
    Gupta S; Bhar A; Chatterjee M; Das S
    PLoS One; 2013; 8(9):e73163. PubMed ID: 24058463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of multiple defense responsive pathways by CaWRKY70 transcription factor promotes susceptibility in chickpea under Fusarium oxysporum stress condition.
    Chakraborty J; Sen S; Ghosh P; Jain A; Das S
    BMC Plant Biol; 2020 Jul; 20(1):319. PubMed ID: 32631232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CaMPK9 increases the stability of CaWRKY40 transcription factor which triggers defense response in chickpea upon Fusarium oxysporum f. sp. ciceri Race1 infection.
    Chakraborty J; Ghosh P; Sen S; Nandi AK; Das S
    Plant Mol Biol; 2019 Jul; 100(4-5):411-431. PubMed ID: 30953279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race 1) interaction through cDNA-AFLP analysis.
    Gupta S; Chakraborti D; Rangi RK; Basu D; Das S
    Phytopathology; 2009 Nov; 99(11):1245-57. PubMed ID: 19821728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I.
    Gupta S; Chakraborti D; Sengupta A; Basu D; Das S
    PLoS One; 2010 Feb; 5(2):e9030. PubMed ID: 20140256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes.
    García-Limones C; Dorado G; Navas-Cortés JA; Jiménez-Díaz RM; Tena M
    Plant Biol (Stuttg); 2009 Mar; 11(2):194-203. PubMed ID: 19228326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proteomic study of in-root interactions between chickpea pathogens: the root-knot nematode Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5.
    Palomares-Rius JE; Castillo P; Navas-Cortés JA; Jiménez-Díaz RM; Tena M
    J Proteomics; 2011 Sep; 74(10):2034-51. PubMed ID: 21640211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Colonization and Expression of Pathogenicity Related Genes in Fusarium oxysporum f.sp. ciceri during Chickpea Vascular Wilt Disease Progression.
    Upasani ML; Gurjar GS; Kadoo NY; Gupta VS
    PLoS One; 2016; 11(5):e0156490. PubMed ID: 27227745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trichoderma mediate early and enhanced lignifications in chickpea during Fusarium oxysporum f. sp. ciceris infection.
    Meshram S; Patel JS; Yadav SK; Kumar G; Singh DP; Singh HB; Sarma BK
    J Basic Microbiol; 2019 Jan; 59(1):74-86. PubMed ID: 30284310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal and spatial changes in phenolic compounds in response to Fusarium wilt in chickpea and pigeonpea.
    Datta J; Lal N
    Cell Mol Biol (Noisy-le-grand); 2012 Dec; 58(1):96-102. PubMed ID: 23273197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways.
    Kumar Y; Dholakia BB; Panigrahi P; Kadoo NY; Giri AP; Gupta VS
    Phytochemistry; 2015 Aug; 116():120-129. PubMed ID: 25935544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infection by Meloidogyne artiellia does not break down resistance to races 0, 1a, and 2 of Fusarium oxysporum f. sp. ciceris in chickpea genotypes.
    Navas-Cortés JA; Landa BB; Rodríguez-López J; Jiménez-Díaz RM; Castillo P
    Phytopathology; 2008 Jun; 98(6):709-18. PubMed ID: 18944296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In planta and soil quantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay.
    Jiménez-Fernández D; Montes-Borrego M; Jiménez-Díaz RM; Navas-Cortés JA; Landa BB
    Phytopathology; 2011 Feb; 101(2):250-62. PubMed ID: 21219129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candidate genes expression profiling during wilting in chickpea caused by Fusarium oxysporum f. sp. ciceris race 5.
    Caballo C; Castro P; Gil J; Millan T; Rubio J; Die JV
    PLoS One; 2019; 14(10):e0224212. PubMed ID: 31644597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-infection of Wilt-Resistant Chickpeas by Fusarium oxysporum f. sp. ciceri and Meloidogyne javanica.
    Maheshwari TU; Sharma SB; Reddy DD; Haware MP
    J Nematol; 1995 Dec; 27(4S):649-53. PubMed ID: 19277336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies.
    Upasani ML; Limaye BM; Gurjar GS; Kasibhatla SM; Joshi RR; Kadoo NY; Gupta VS
    Sci Rep; 2017 Aug; 7(1):7746. PubMed ID: 28798320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical interaction between nuclear accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt resistance in chickpea.
    Chakraborty J; Priya P; Dastidar SG; Das S
    Plant Sci; 2018 Nov; 276():111-133. PubMed ID: 30348309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential gene expression in response to Fusarium oxysporum infection in resistant and susceptible genotypes of flax (Linum usitatissimum L.).
    Dmitriev AA; Krasnov GS; Rozhmina TA; Novakovskiy RO; Snezhkina AV; Fedorova MS; Yurkevich OY; Muravenko OV; Bolsheva NL; Kudryavtseva AV; Melnikova NV
    BMC Plant Biol; 2017 Dec; 17(Suppl 2):253. PubMed ID: 29297347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.