These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28542700)

  • 1. Modeling thrombus formation and growth.
    Hosseinzadegan H; Tafti DK
    Biotechnol Bioeng; 2017 Oct; 114(10):2154-2172. PubMed ID: 28542700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A continuum model for platelet transport in flowing blood based on direct numerical simulations of cellular blood flow.
    Mehrabadi M; Ku DN; Aidun CK
    Ann Biomed Eng; 2015 Jun; 43(6):1410-21. PubMed ID: 25348844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thrombus Formation at High Shear Rates.
    Casa LDC; Ku DN
    Annu Rev Biomed Eng; 2017 Jun; 19():415-433. PubMed ID: 28441034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow.
    Folie BJ; McIntire LV
    Biophys J; 1989 Dec; 56(6):1121-41. PubMed ID: 2611327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A General Shear-Dependent Model for Thrombus Formation.
    Yazdani A; Li H; Humphrey JD; Karniadakis GE
    PLoS Comput Biol; 2017 Jan; 13(1):e1005291. PubMed ID: 28095402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the effect of blood vessel bifurcation ratio on occlusive thrombus formation.
    Lakshmanan HHS; Shatzel JJ; Olson SR; McCarty OJT; Maddala J
    Comput Methods Biomech Biomed Engin; 2019 Aug; 22(11):972-980. PubMed ID: 31066295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study on thrombus formation regulated by platelet glycoprotein and blood flow shear.
    Kamada H; Imai Y; Nakamura M; Ishikawa T; Yamaguchi T
    Microvasc Res; 2013 Sep; 89():95-106. PubMed ID: 23743249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational model of device-induced thrombosis and thromboembolism.
    Goodman PD; Barlow ET; Crapo PM; Mohammad SF; Solen KA
    Ann Biomed Eng; 2005 Jun; 33(6):780-97. PubMed ID: 16078618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A road to bring Brij52 back to attention: Shear stress sensitive Brij52 niosomal carriers for targeted drug delivery to obstructed blood vessels.
    Arjmand S; Pardakhty A; Forootanfar H; Khazaeli P
    Med Hypotheses; 2018 Dec; 121():137-141. PubMed ID: 30396467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Thrombus Growth: Effect of Stenosis and Reynolds Number.
    Hosseinzadegan H; Tafti DK
    Cardiovasc Eng Technol; 2017 Jun; 8(2):164-181. PubMed ID: 28470538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of the relationship between hemodynamics and thrombus deposition within patient-specific models of abdominal aortic aneurysm.
    O'Rourke MJ; McCullough JP; Kelly S
    Proc Inst Mech Eng H; 2012 Jul; 226(7):548-64. PubMed ID: 22913102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of arterial flow on platelet activation, thrombus growth, and stabilization.
    Cosemans JM; Angelillo-Scherrer A; Mattheij NJ; Heemskerk JW
    Cardiovasc Res; 2013 Jul; 99(2):342-52. PubMed ID: 23667186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modeling of thrombus growth in mesenteric vessels.
    Alenitsyn A; Kondratyev A; Mikhailova I; Siddique I
    Math Biosci; 2010 Mar; 224(1):29-34. PubMed ID: 20043925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a computational model for macroscopic predictions of device-induced thrombosis.
    Taylor JO; Meyer RS; Deutsch S; Manning KB
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1713-1731. PubMed ID: 27169403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced effect of aspirin on thrombus formation at high shear and disturbed laminar blood flow.
    Barstad RM; Orvim U; Hamers MJ; Tjønnfjord GE; Brosstad FR; Sakariassen KS
    Thromb Haemost; 1996 May; 75(5):827-32. PubMed ID: 8725731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The function of ultra-large von Willebrand factor multimers in high shear flow controlled by ADAMTS13.
    Reininger AJ
    Hamostaseologie; 2015; 35(3):225-33. PubMed ID: 25983111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of the influence of a bearing/shaft structure in an axial blood pump on the potential for device thrombosis.
    Liu GM; Jin DH; Chen HB; Hou JF; Zhang Y; Sun HS; Zhou JY; Hu SS; Gui XM
    Int J Artif Organs; 2019 Apr; 42(4):182-189. PubMed ID: 30630379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tortuosity triggers platelet activation and thrombus formation in microvessels.
    Chesnutt JK; Han HC
    J Biomech Eng; 2011 Dec; 133(12):121004. PubMed ID: 22206421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational simulation of platelet interactions in the initiation of stent thrombosis due to stent malapposition.
    Chesnutt JK; Han HC
    Phys Biol; 2016 Jan; 13(1):016001. PubMed ID: 26790093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.