BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28543069)

  • 1. Real-time dynamic MR image reconstruction using compressed sensing and principal component analysis (CS-PCA): Demonstration in lung tumor tracking.
    Dietz B; Yip E; Yun J; Fallone BG; Wachowicz K
    Med Phys; 2017 Aug; 44(8):3978-3989. PubMed ID: 28543069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time domain principal component analysis for rapid, real-time 2D MRI reconstruction from undersampled data.
    Wright M; Dietz B; Yip E; Yun J; Gabos Z; Fallone BG; Wachowicz K
    Med Phys; 2021 Nov; 48(11):6724-6739. PubMed ID: 34528275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single patient convolutional neural networks for real-time MR reconstruction: a proof of concept application in lung tumor segmentation for adaptive radiotherapy.
    Dietz B; Yun J; Yip E; Gabos Z; Fallone BG; Wachowicz K
    Phys Med Biol; 2019 Sep; 64(19):195002. PubMed ID: 31476750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single patient convolutional neural networks for real-time MR reconstruction: coherent low-resolution versus incoherent undersampling.
    Dietz B; Yun J; Yip E; Gabos Z; Fallone BG; Wachowicz K
    Phys Med Biol; 2020 Apr; 65(8):08NT03. PubMed ID: 32135531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding window prior data assisted compressed sensing for MRI tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2017 Jan; 44(1):84-98. PubMed ID: 28102958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principal component analysis-based imaging angle determination for 3D motion monitoring using single-slice on-board imaging.
    Chen T; Zhang M; Jabbour S; Wang H; Barbee D; Das IJ; Yue N
    Med Phys; 2018 Jun; 45(6):2377-2387. PubMed ID: 29635762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressed sensing acceleration of biexponential 3D-T
    Zibetti MVW; Sharafi A; Otazo R; Regatte RR
    Magn Reson Med; 2019 Feb; 81(2):863-880. PubMed ID: 30230588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating performance of a user-trained MR lung tumor autocontouring algorithm in the context of intra- and interobserver variations.
    Yip E; Yun J; Gabos Z; Baker S; Yee D; Wachowicz K; Rathee S; Fallone BG
    Med Phys; 2018 Jan; 45(1):307-313. PubMed ID: 29159957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A particle filter based autocontouring algorithm for lung tumor tracking using dynamic magnetic resonance imaging.
    Bourque AE; Bedwani S; Filion É; Carrier JF
    Med Phys; 2016 Sep; 43(9):5161. PubMed ID: 27587046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved
    Wang Y; Chen Z; Wang J; Yuan L; Xia L; Liu F
    Comput Math Methods Med; 2017; 2017():4816024. PubMed ID: 28804506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Variable Density and Data-Driven K-Space Undersampling for Compressed Sensing Magnetic Resonance Imaging.
    Zijlstra F; Viergever MA; Seevinck PR
    Invest Radiol; 2016 Jun; 51(6):410-9. PubMed ID: 26674209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudo-spiral sampling and compressed sensing reconstruction provides flexibility of temporal resolution in accelerated aortic 4D flow MRI: A comparison with k-t principal component analysis.
    Gottwald LM; Peper ES; Zhang Q; Coolen BF; Strijkers GJ; Nederveen AJ; van Ooij P
    NMR Biomed; 2020 Apr; 33(4):e4255. PubMed ID: 31957927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid reconstruction of highly undersampled, non-Cartesian real-time cine k-space data using a perceptual complex neural network (PCNN).
    Shen D; Ghosh S; Haji-Valizadeh H; Pathrose A; Schiffers F; Lee DC; Freed BH; Markl M; Cossairt OS; Katsaggelos AK; Kim D
    NMR Biomed; 2021 Jan; 34(1):e4405. PubMed ID: 32875668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-prior image-guided MRI reconstruction with dictionary learning.
    Li J; Liu Q; Zhao J
    Med Phys; 2019 Feb; 46(2):517-527. PubMed ID: 30548875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time radial reconstruction with domain transform manifold learning for MRI-guided radiotherapy.
    Waddington DEJ; Hindley N; Koonjoo N; Chiu C; Reynolds T; Liu PZY; Zhu B; Bhutto D; Paganelli C; Keall PJ; Rosen MS
    Med Phys; 2023 Apr; 50(4):1962-1974. PubMed ID: 36646444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploitation of temporal redundancy in compressed sensing reconstruction of fMRI studies with a prior-based algorithm (PICCS).
    Chavarrías C; Abascal JF; Montesinos P; Desco M
    Med Phys; 2015 Jul; 42(7):3814-21. PubMed ID: 26133583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-rank plus sparse compressed sensing for accelerated proton resonance frequency shift MR temperature imaging.
    Cao Z; Gore JC; Grissom WA
    Magn Reson Med; 2019 Jun; 81(6):3555-3566. PubMed ID: 30706540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.