BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 28543529)

  • 1. Kir2.1 and K2P1 channels reconstitute two levels of resting membrane potential in cardiomyocytes.
    Zuo D; Chen K; Zhou M; Liu Z; Chen H
    J Physiol; 2017 Aug; 595(15):5129-5142. PubMed ID: 28543529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kir2.1 channels set two levels of resting membrane potential with inward rectification.
    Chen K; Zuo D; Liu Z; Chen H
    Pflugers Arch; 2018 Apr; 470(4):599-611. PubMed ID: 29282531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.
    Ma L; Zhang X; Chen H
    Sci Signal; 2011 Jun; 4(176):ra37. PubMed ID: 21653227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kir2 inward rectification-controlled precise and dynamic balances between Kir2 and HCN currents initiate pacemaking activity.
    Chen K; Zuo D; Wang SY; Chen H
    FASEB J; 2018 Jun; 32(6):3047-3057. PubMed ID: 29401592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Kir2.1 channel populations with different sensitivities to Mg(2+) and polyamine block: a model for the cardiac strong inward rectifier K(+) channel.
    Yan DH; Ishihara K
    J Physiol; 2005 Mar; 563(Pt 3):725-44. PubMed ID: 15618275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K2P1 leak cation channels contribute to ventricular ectopic beats and sudden death under hypokalemia.
    Shen R; Zuo D; Chen K; Yin Y; Tang K; Hou S; Han B; Xu Y; Liu Z; Chen H
    FASEB J; 2022 Aug; 36(8):e22455. PubMed ID: 35899468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac Kir2.1 and Na
    Ponce-Balbuena D; Guerrero-Serna G; Valdivia CR; Caballero R; Diez-Guerra FJ; Jiménez-Vázquez EN; Ramírez RJ; Monteiro da Rocha A; Herron TJ; Campbell KF; Willis BC; Alvarado FJ; Zarzoso M; Kaur K; Pérez-Hernández M; Matamoros M; Valdivia HH; Delpón E; Jalife J
    Circ Res; 2018 May; 122(11):1501-1516. PubMed ID: 29514831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and functional characterization of inwardly rectifying K
    Huang X; Lee SH; Lu H; Sanders KM; Koh SD
    J Physiol; 2018 Feb; 596(3):379-391. PubMed ID: 29205356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kir2.3 knock-down decreases IK1 current in neonatal rat cardiomyocytes.
    He Y; Pan Q; Li J; Chen H; Zhou Q; Hong K; Brugada R; Perez GJ; Brugada P; Chen YH
    FEBS Lett; 2008 Jun; 582(15):2338-42. PubMed ID: 18503768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy.
    Young CC; Stegen M; Bernard R; Müller M; Bischofberger J; Veh RW; Haas CA; Wolfart J
    J Physiol; 2009 Sep; 587(Pt 17):4213-33. PubMed ID: 19564397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-affinity spermine block mediating outward currents through Kir2.1 and Kir2.2 inward rectifier potassium channels.
    Ishihara K; Yan DH
    J Physiol; 2007 Sep; 583(Pt 3):891-908. PubMed ID: 17640933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional expression of inward rectifier potassium channels in cultured human pulmonary smooth muscle cells: evidence for a major role of Kir2.4 subunits.
    Tennant BP; Cui Y; Tinker A; Clapp LH
    J Membr Biol; 2006; 213(1):19-29. PubMed ID: 17347781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syncytium cell growth increases Kir2.1 contribution in human iPSC-cardiomyocytes.
    Li W; Han JL; Entcheva E
    Am J Physiol Heart Circ Physiol; 2020 Nov; 319(5):H1112-H1122. PubMed ID: 32986966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inward Rectifier K
    Pluteanu F; Seidl MD; Hamer S; Scholz B; Müller FU
    J Am Heart Assoc; 2020 Dec; 9(23):e016144. PubMed ID: 33191843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of drugs that increase cardiac inward rectifier Kir2.1 currents.
    Gómez R; Caballero R; Barana A; Amorós I; De Palm SH; Matamoros M; Núñez M; Pérez-Hernández M; Iriepa I; Tamargo J; Delpón E
    Cardiovasc Res; 2014 Nov; 104(2):337-46. PubMed ID: 25205296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide increases cardiac IK1 by nitrosylation of cysteine 76 of Kir2.1 channels.
    Gómez R; Caballero R; Barana A; Amorós I; Calvo E; López JA; Klein H; Vaquero M; Osuna L; Atienza F; Almendral J; Pinto A; Tamargo J; Delpón E
    Circ Res; 2009 Aug; 105(4):383-92. PubMed ID: 19608980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage dependence of ATP-dependent K+ current in rat cardiac myocytes is affected by IK1 and IK(ACh).
    Wellner-Kienitz MC; Bender K; Rinne A; Pott L
    J Physiol; 2004 Dec; 561(Pt 2):459-69. PubMed ID: 15459245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current.
    Dhamoon AS; Pandit SV; Sarmast F; Parisian KR; Guha P; Li Y; Bagwe S; Taffet SM; Anumonwo JM
    Circ Res; 2004 May; 94(10):1332-9. PubMed ID: 15087421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different intracellular polyamine concentrations underlie the difference in the inward rectifier K(+) currents in atria and ventricles of the guinea-pig heart.
    Yan DH; Nishimura K; Yoshida K; Nakahira K; Ehara T; Igarashi K; Ishihara K
    J Physiol; 2005 Mar; 563(Pt 3):713-24. PubMed ID: 15668212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.
    Sonkusare SK; Dalsgaard T; Bonev AD; Nelson MT
    J Physiol; 2016 Jun; 594(12):3271-85. PubMed ID: 26840527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.