These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

642 related articles for article (PubMed ID: 28543603)

  • 1. Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine.
    Hamed S; Emara M; Shawky RM; El-Domany RA; Youssef T
    J Basic Microbiol; 2017 Aug; 57(8):659-668. PubMed ID: 28543603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-dependent antimicrobial activities of silver nanoparticles.
    Cheon JY; Kim SJ; Rhee YH; Kwon OH; Park WH
    Int J Nanomedicine; 2019; 14():2773-2780. PubMed ID: 31118610
    [No Abstract]   [Full Text] [Related]  

  • 3. Varying the morphology of silver nanoparticles results in differential toxicity against micro-organisms, HaCaT keratinocytes and affects skin deposition.
    Holmes AM; Lim J; Studier H; Roberts MS
    Nanotoxicology; 2016 Dec; 10(10):1503-1514. PubMed ID: 27636544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial and cytotoxic activity of silver nanoparticles synthesized from two haloalkaliphilic actinobacterial strains alone and in combination with antibiotics.
    Wypij M; Świecimska M; Czarnecka J; Dahm H; Rai M; Golinska P
    J Appl Microbiol; 2018 Jun; 124(6):1411-1424. PubMed ID: 29427473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain.
    Wypij M; Czarnecka J; Świecimska M; Dahm H; Rai M; Golinska P
    World J Microbiol Biotechnol; 2018 Jan; 34(2):23. PubMed ID: 29305718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using
    Escárcega-González CE; Garza-Cervantes JA; Vázquez-Rodríguez A; Montelongo-Peralta LZ; Treviño-González MT; Díaz Barriga Castro E; Saucedo-Salazar EM; Chávez Morales RM; Regalado Soto DI; Treviño González FM; Carrazco Rosales JL; Cruz RV; Morones-Ramírez JR
    Int J Nanomedicine; 2018; 13():2349-2363. PubMed ID: 29713166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.
    Ni Z; Wang Z; Sun L; Li B; Zhao Y
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():249-54. PubMed ID: 24907758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of Ag, Se, and ZnO nanoparticles with antimicrobial activities against resistant pathogens using waste isolate
    Shaaban M; El-Mahdy AM
    IET Nanobiotechnol; 2018 Sep; 12(6):741-747. PubMed ID: 30104447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells.
    Korshed P; Li L; Liu Z; Mironov A; Wang T
    Int J Nanomedicine; 2018; 13():89-101. PubMed ID: 29317818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles.
    Hussain MA; Shah A; Jantan I; Shah MR; Tahir MN; Ahmad R; Bukhari SN
    Int J Nanomedicine; 2015; 10():2079-88. PubMed ID: 25844038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities.
    Şeker Karatoprak G; Aydin G; Altinsoy B; Altinkaynak C; Koşar M; Ocsoy I
    Enzyme Microb Technol; 2017 Feb; 97():21-26. PubMed ID: 28010769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites.
    Nguyen VQ; Ishihara M; Kinoda J; Hattori H; Nakamura S; Ono T; Miyahira Y; Matsui T
    J Nanobiotechnology; 2014 Dec; 12():49. PubMed ID: 25467525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect between silver nanoparticles and antifungal agents on Candida albicans revealed by dynamic surface-enhanced Raman spectroscopy.
    Li H; Wang L; Chai Y; Cao Y; Lu F
    Nanotoxicology; 2018 Dec; 12(10):1230-1240. PubMed ID: 30501538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of pure and moxifloxacin functionalized silver oxide nanoparticles for photocatalytic and antimicrobial activity.
    Haq S; Rehman W; Waseem M; Meynen V; Awan SU; Saeed S; Iqbal N
    J Photochem Photobiol B; 2018 Sep; 186():116-124. PubMed ID: 30036828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications.
    Annadhasan M; SankarBabu VR; Naresh R; Umamaheswari K; Rajendiran N
    Colloids Surf B Biointerfaces; 2012 Aug; 96():14-21. PubMed ID: 22537720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial efficacy of silver ions in combination with tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans.
    Low WL; Martin C; Hill DJ; Kenward MA
    Int J Antimicrob Agents; 2011 Feb; 37(2):162-5. PubMed ID: 21163626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film.
    Ghosh S; Kaushik R; Nagalakshmi K; Hoti SL; Menezes GA; Harish BN; Vasan HN
    Carbohydr Res; 2010 Oct; 345(15):2220-7. PubMed ID: 20800222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hindering the biofilm of microbial pathogens and cancer cell lines development using silver nanoparticles synthesized by epidermal mucus proteins from Clarias gariepinus.
    Alabssawy AN; Abu-Elghait M; Azab AM; Khalaf-Allah HMM; Ashry AS; Ali AOM; Sabra AAA; Salem SS
    BMC Biotechnol; 2024 May; 24(1):28. PubMed ID: 38702622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.
    Birla SS; Tiwari VV; Gade AK; Ingle AP; Yadav AP; Rai MK
    Lett Appl Microbiol; 2009 Feb; 48(2):173-9. PubMed ID: 19141039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of glutathione-stabilized silver nanoparticles on expression of las I and las R of the genes in Pseudomonas aeruginosa strains.
    Pourmbarak Mahnaie M; Mahmoudi H
    Eur J Med Res; 2020 May; 25(1):17. PubMed ID: 32434568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.