These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2854373)

  • 21. Requirements for reliable determination of binding affinity constants by saturation analysis approach.
    Borgna JL
    J Steroid Biochem Mol Biol; 2004 Dec; 92(5):419-33. PubMed ID: 15698547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of ligand-binding data without knowledge of bound or free ligand molar concentration.
    Le Bonniec B; Sauloy J; Ducrocq R; Elion J
    Anal Biochem; 1988 Oct; 174(1):280-90. PubMed ID: 3218740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interpretation of binding curves obtained with high receptor concentrations: practical aid for computer analysis.
    Swillens S
    Mol Pharmacol; 1995 Jun; 47(6):1197-203. PubMed ID: 7603460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental design and estimation of parameters in complex radioligand binding systems.
    Staschen CM; Homer LD
    J Pharmacokinet Biopharm; 1996 Dec; 24(6):589-609. PubMed ID: 9300352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of gonadotropin binding by receptors of the rat testis. Analysis by a nonlinear curve-fitting method.
    Ketelslegers JM; Knott GD; Catt KJ
    Biochemistry; 1975 Jul; 14(14):3075-83. PubMed ID: 167815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stochastic simulation of ligand-receptor interaction.
    Veitl M; Schweiger U; Berger ML
    Comput Biomed Res; 1997 Dec; 30(6):427-50. PubMed ID: 9466834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First passage and cooperativity of queuing kinetics.
    D'Orsogna MR; Chou T
    Phys Rev Lett; 2005 Oct; 95(17):170603. PubMed ID: 16383812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Consequences of ligand bivalency in interactions involving particulate receptors: equilibrium and kinetic studies with Sephadex-concanavalin A, butylagarose-phosphorylase b, and Fc receptor-IgG dimer interactions as model systems.
    Hogg PJ; Reilly PE; Winzor DJ
    Biochemistry; 1987 Apr; 26(7):1867-73. PubMed ID: 2439115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative in vivo receptor binding III: Tracer kinetic modeling of muscarinic cholinergic receptor binding.
    Frey KA; Hichwa RD; Ehrenkaufer RL; Agranoff BW
    Proc Natl Acad Sci U S A; 1985 Oct; 82(19):6711-5. PubMed ID: 3876561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of kinetics by cooperative interactions.
    Hellmann N
    IUBMB Life; 2011 May; 63(5):329-36. PubMed ID: 21491560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of protein-ligand binding constants at equilibrium in biological samples.
    Blondeau JP; Robel P
    Eur J Biochem; 1975 Jul; 55(2):375-84. PubMed ID: 1201753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential misconceptions arising from the application of enzyme kinetic equations to ligand-receptor systems at equilibrium.
    Tomlinson G
    Can J Physiol Pharmacol; 1988 Apr; 66(4):342-9. PubMed ID: 2844370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of low-density lipoprotein receptor activity in Hep-G2 cells: derivation and validation of a Briggs-Haldane-based kinetic model for evaluating receptor-mediated endocytotic processes in which receptors recycle.
    Harwood HJ; Pellarin LD
    Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):649-59. PubMed ID: 9169597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A kinetic model of GPCRs: analysis of G protein activity, occupancy, coupling and receptor-state affinity constants.
    Stein RS; Ehlert FJ
    J Recept Signal Transduct Res; 2015; 35(4):269-83. PubMed ID: 25353707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. KINFIT II: a nonlinear least-squares program for analysis of kinetic binding data.
    Rovati GE; Shrager R; Nicosia S; Munson PJ
    Mol Pharmacol; 1996 Jul; 50(1):86-95. PubMed ID: 8700124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New capabilities in determining the binding parameters for ligand-receptor interaction.
    Bobrovnik S
    J Biochem Biophys Methods; 2005 Oct; 65(1):30-44. PubMed ID: 16188321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of ligand heterogeneity on the Scatchard plot. Particular relevance to lipoprotein binding analysis.
    Mendel CM; Licko V; Kane JP
    J Biol Chem; 1985 Mar; 260(6):3451-5. PubMed ID: 2982861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Analysis of some "insoluble" problems of determining the binding parameters of ligand-receptor interaction and methods of their solving].
    Bobrovnik SA
    Ukr Biokhim Zh (1999); 2004; 76(6):5-28. PubMed ID: 16350740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. General solutions to decompose heterogeneous compositions using antibody afucosylation as a model system.
    Chung JD; Zhan PL
    Biotechnol Prog; 2017 Mar; 33(2):500-510. PubMed ID: 28019689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of ligand binding parameters by simultaneous fitting of association and dissociation data: a Monte Carlo simulation study.
    Karlsson MO; Neil A
    Mol Pharmacol; 1989 Jan; 35(1):59-66. PubMed ID: 2913484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.