These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28543849)

  • 1. Abiotic stress, stress combinations and crop improvement potential.
    Loudet O; Hasegawa PM
    Plant J; 2017 Jun; 90(5):837-838. PubMed ID: 28543849
    [No Abstract]   [Full Text] [Related]  

  • 2. Achieving crop stress tolerance and improvement--an overview of genomic techniques.
    Rasool S; Ahmad P; Rehman MU; Arif A; Anjum NA
    Appl Biochem Biotechnol; 2015 Dec; 177(7):1395-408. PubMed ID: 26440315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional networks-crops, clocks, and abiotic stress.
    Gehan MA; Greenham K; Mockler TC; McClung CR
    Curr Opin Plant Biol; 2015 Apr; 24():39-46. PubMed ID: 25646668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Process and mechanism of plants in overcoming acid soil aluminum stress].
    Zhao TL; Xie GN; Zhang XX; Qiu LQ; Wang N; Zhang SZ
    Ying Yong Sheng Tai Xue Bao; 2013 Oct; 24(10):3003-11. PubMed ID: 24483099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency.
    Kochian LV; Hoekenga OA; Pineros MA
    Annu Rev Plant Biol; 2004; 55():459-93. PubMed ID: 15377228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox Strategies for Crop Improvement.
    Kerchev P; De Smet B; Waszczak C; Messens J; Van Breusegem F
    Antioxid Redox Signal; 2015 Nov; 23(14):1186-205. PubMed ID: 26062101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting induced and natural epigenetic variation for crop improvement.
    Springer NM; Schmitz RJ
    Nat Rev Genet; 2017 Sep; 18(9):563-575. PubMed ID: 28669983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Untapping root system architecture for crop improvement.
    Hochholdinger F
    J Exp Bot; 2016 Aug; 67(15):4431-3. PubMed ID: 27493225
    [No Abstract]   [Full Text] [Related]  

  • 9. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops.
    Reguera M; Peleg Z; Blumwald E
    Biochim Biophys Acta; 2012 Feb; 1819(2):186-94. PubMed ID: 21867784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormone balance and abiotic stress tolerance in crop plants.
    Peleg Z; Blumwald E
    Curr Opin Plant Biol; 2011 Jun; 14(3):290-5. PubMed ID: 21377404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement.
    Vanderschuren H; Lentz E; Zainuddin I; Gruissem W
    J Proteomics; 2013 Nov; 93():5-19. PubMed ID: 23748024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges in breeding for yield increase for drought.
    Sinclair TR
    Trends Plant Sci; 2011 Jun; 16(6):289-93. PubMed ID: 21419688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research advances in major cereal crops for adaptation to abiotic stresses.
    Maiti RK; Satya P
    GM Crops Food; 2014; 5(4):259-79. PubMed ID: 25523172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The race to create super-crops.
    Gilbert N
    Nature; 2016 May; 533(7603):308-10. PubMed ID: 27193660
    [No Abstract]   [Full Text] [Related]  

  • 15. Progress and challenges for abiotic stress proteomics of crop plants.
    Barkla BJ; Vera-Estrella R; Pantoja O
    Proteomics; 2013 Jun; 13(12-13):1801-15. PubMed ID: 23512887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A special issue on plant stress biology: from model species to crops.
    Li W; Cui X
    Mol Plant; 2014 May; 7(5):755-7. PubMed ID: 24786181
    [No Abstract]   [Full Text] [Related]  

  • 17. Aluminium-phosphorus interactions in plants growing on acid soils: does phosphorus always alleviate aluminium toxicity?
    Chen RF; Zhang FL; Zhang QM; Sun QB; Dong XY; Shen RF
    J Sci Food Agric; 2012 Mar; 92(5):995-1000. PubMed ID: 21815161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field high-throughput phenotyping: the new crop breeding frontier.
    Araus JL; Cairns JE
    Trends Plant Sci; 2014 Jan; 19(1):52-61. PubMed ID: 24139902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coping with abiotic stress: proteome changes for crop improvement.
    Abreu IA; Farinha AP; Negrão S; Gonçalves N; Fonseca C; Rodrigues M; Batista R; Saibo NJ; Oliveira MM
    J Proteomics; 2013 Nov; 93():145-68. PubMed ID: 23886779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in crop proteomics: PTMs of proteins under abiotic stress.
    Wu X; Gong F; Cao D; Hu X; Wang W
    Proteomics; 2016 Mar; 16(5):847-65. PubMed ID: 26616472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.