These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28544178)

  • 1. Transition-Metal Nitride Core@Noble-Metal Shell Nanoparticles as Highly CO Tolerant Catalysts.
    Garg A; Milina M; Ball M; Zanchet D; Hunt ST; Dumesic JA; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2017 Jul; 56(30):8828-8833. PubMed ID: 28544178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells.
    Göhl D; Garg A; Paciok P; Mayrhofer KJJ; Heggen M; Shao-Horn Y; Dunin-Borkowski RE; Román-Leshkov Y; Ledendecker M
    Nat Mater; 2020 Mar; 19(3):287-291. PubMed ID: 31844277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts.
    Hunt ST; Milina M; Alba-Rubio AC; Hendon CH; Dumesic JA; Román-Leshkov Y
    Science; 2016 May; 352(6288):974-8. PubMed ID: 27199426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning core-shell interactions in tungsten carbide-Pt nanoparticles for the hydrogen evolution reaction.
    Jain A; Ramasubramaniam A
    Phys Chem Chem Phys; 2018 Sep; 20(36):23262-23271. PubMed ID: 30191205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction.
    Zhang J; Lima FH; Shao MH; Sasaki K; Wang JX; Hanson J; Adzic RR
    J Phys Chem B; 2005 Dec; 109(48):22701-4. PubMed ID: 16853957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts.
    Hsieh YC; Zhang Y; Su D; Volkov V; Si R; Wu L; Zhu Y; An W; Liu P; He P; Ye S; Adzic RR; Wang JX
    Nat Commun; 2013; 4():2466. PubMed ID: 24045405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.
    Huang R; Wen YH; Shao GF; Sun SG
    Phys Chem Chem Phys; 2016 Jun; 18(25):17010-7. PubMed ID: 27297782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitride stabilized PtNi core-shell nanocatalyst for high oxygen reduction activity.
    Kuttiyiel KA; Sasaki K; Choi Y; Su D; Liu P; Adzic RR
    Nano Lett; 2012 Dec; 12(12):6266-71. PubMed ID: 23194259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Atomic Regulation of Core-Shell Noble Metal Catalysts.
    Ge J; Li Z; Hong X; Li Y
    Chemistry; 2019 Apr; 25(20):5113-5127. PubMed ID: 30484919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis.
    Hunt ST; Nimmanwudipong T; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2014 May; 53(20):5131-6. PubMed ID: 24700729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale.
    Oezaslan M; Heggen M; Strasser P
    J Am Chem Soc; 2012 Jan; 134(1):514-24. PubMed ID: 22129031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.
    Chen D; Ye F; Liu H; Yang J
    Sci Rep; 2016 Apr; 6():24600. PubMed ID: 27079897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light.
    Maeda K; Sakamoto N; Ikeda T; Ohtsuka H; Xiong A; Lu D; Kanehara M; Teranishi T; Domen K
    Chemistry; 2010 Jul; 16(26):7750-9. PubMed ID: 20564294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.
    Strasser P
    Acc Chem Res; 2016 Nov; 49(11):2658-2668. PubMed ID: 27797179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile route to core-shell catalysts: synthesis of dispersible M@oxide (M=Pd, Pt; oxide=TiO2, ZrO2) nanostructures by self-assembly.
    Bakhmutsky K; Wieder NL; Cargnello M; Galloway B; Fornasiero P; Gorte RJ
    ChemSusChem; 2012 Jan; 5(1):140-8. PubMed ID: 22250137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.