BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 28544184)

  • 1. Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis.
    Bodył A
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):201-222. PubMed ID: 28544184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The endosymbiotic origin, diversification and fate of plastids.
    Keeling PJ
    Philos Trans R Soc Lond B Biol Sci; 2010 Mar; 365(1541):729-48. PubMed ID: 20124341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterotachy processes in rhodophyte-derived secondhand plastid genes: Implications for addressing the origin and evolution of dinoflagellate plastids.
    Shalchian-Tabrizi K; Skånseng M; Ronquist F; Klaveness D; Bachvaroff TR; Delwiche CF; Botnen A; Tengs T; Jakobsen KS
    Mol Biol Evol; 2006 Aug; 23(8):1504-15. PubMed ID: 16699169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events.
    Füssy Z; Oborník M
    Methods Mol Biol; 2024; 2776():21-41. PubMed ID: 38502496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates.
    Petersen J; Teich R; Brinkmann H; Cerff R
    J Mol Evol; 2006 Feb; 62(2):143-57. PubMed ID: 16474987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis.
    Nosenko T; Lidie KL; Van Dolah FM; Lindquist E; Cheng JF; Bhattacharya D
    Mol Biol Evol; 2006 Nov; 23(11):2026-38. PubMed ID: 16877498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry.
    Ponce-Toledo RI; Moreira D; López-García P; Deschamps P
    Mol Biol Evol; 2018 Sep; 35(9):2198-2204. PubMed ID: 29924337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates.
    Patron NJ; Rogers MB; Keeling PJ
    Eukaryot Cell; 2004 Oct; 3(5):1169-75. PubMed ID: 15470245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
    Janouskovec J; Horák A; Oborník M; Lukes J; Keeling PJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10949-54. PubMed ID: 20534454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages).
    Petersen J; Ludewig AK; Michael V; Bunk B; Jarek M; Baurain D; Brinkmann H
    Genome Biol Evol; 2014 Mar; 6(3):666-84. PubMed ID: 24572015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An assessment of vertical inheritance versus endosymbiont transfer of nucleus-encoded genes for mitochondrial proteins following tertiary endosymbiosis in Karlodinium micrum.
    Danne JC; Gornik SG; Waller RF
    Protist; 2012 Jan; 163(1):76-90. PubMed ID: 21741306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny of dinoflagellate plastid genes recently transferred to the nucleus supports a common ancestry with red algal plastid genes.
    Wang Y; Joly S; Morse D
    J Mol Evol; 2008 Feb; 66(2):175-84. PubMed ID: 18253685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids.
    Maruyama S; Suzaki T; Weber AP; Archibald JM; Nozaki H
    BMC Evol Biol; 2011 Apr; 11():105. PubMed ID: 21501489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sure facts and open questions about the origin and evolution of photosynthetic plastids.
    Moreira D; Philippe H
    Res Microbiol; 2001 Nov; 152(9):771-80. PubMed ID: 11763237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Horizontal and endosymbiotic gene transfer in early plastid evolution.
    Ponce-Toledo RI; López-García P; Moreira D
    New Phytol; 2019 Oct; 224(2):618-624. PubMed ID: 31135958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic footprints of a cryptic plastid endosymbiosis in diatoms.
    Moustafa A; Beszteri B; Maier UG; Bowler C; Valentin K; Bhattacharya D
    Science; 2009 Jun; 324(5935):1724-6. PubMed ID: 19556510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events.
    Füssy Z; Oborník M
    Methods Mol Biol; 2018; 1829():17-35. PubMed ID: 29987712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses.
    Teich R; Zauner S; Baurain D; Brinkmann H; Petersen J
    Protist; 2007 Jul; 158(3):263-76. PubMed ID: 17368985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum.
    Minge MA; Shalchian-Tabrizi K; Tørresen OK; Takishita K; Probert I; Inagaki Y; Klaveness D; Jakobsen KS
    BMC Evol Biol; 2010 Jun; 10():191. PubMed ID: 20565933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.