These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28544190)

  • 61. Do marine phytoplankton follow Bergmann's rule sensu lato?
    Sommer U; Peter KH; Genitsaris S; Moustaka-Gouni M
    Biol Rev Camb Philos Soc; 2017 May; 92(2):1011-1026. PubMed ID: 27028628
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Idiosyncratic species effects confound size-based predictions of responses to climate change.
    Twomey M; Brodte E; Jacob U; Brose U; Crowe TP; Emmerson MC
    Philos Trans R Soc Lond B Biol Sci; 2012 Nov; 367(1605):2971-8. PubMed ID: 23007085
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Implications of climate change for the fishes of the British Isles.
    Graham CT; Harrod C
    J Fish Biol; 2009 Apr; 74(6):1143-205. PubMed ID: 20735625
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evidence of current impact of climate change on life: a walk from genes to the biosphere.
    Peñuelas J; Sardans J; Estiarte M; Ogaya R; Carnicer J; Coll M; Barbeta A; Rivas-Ubach A; Llusià J; Garbulsky M; Filella I; Jump AS
    Glob Chang Biol; 2013 Aug; 19(8):2303-38. PubMed ID: 23505157
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A bioenergetic framework for the temperature dependence of trophic interactions.
    Gilbert B; Tunney TD; McCann KS; DeLong JP; Vasseur DA; Savage V; Shurin JB; Dell AI; Barton BT; Harley CD; Kharouba HM; Kratina P; Blanchard JL; Clements C; Winder M; Greig HS; O'Connor MI
    Ecol Lett; 2014 Aug; 17(8):902-14. PubMed ID: 24894409
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Temperature variability alters the stability and thresholds for collapse of interacting species.
    Dee LE; Okamtoto D; Gårdmark A; Montoya JM; Miller SJ
    Philos Trans R Soc Lond B Biol Sci; 2020 Dec; 375(1814):20190457. PubMed ID: 33131433
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Experimental evidence of gradual size-dependent shifts in body size and growth of fish in response to warming.
    Huss M; Lindmark M; Jacobson P; van Dorst RM; Gårdmark A
    Glob Chang Biol; 2019 Jul; 25(7):2285-2295. PubMed ID: 30932292
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Boosted food web productivity through ocean acidification collapses under warming.
    Goldenberg SU; Nagelkerken I; Ferreira CM; Ullah H; Connell SD
    Glob Chang Biol; 2017 Oct; 23(10):4177-4184. PubMed ID: 28447365
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects.
    Jaramillo E; Dugan JE; Hubbard DM; Contreras H; Duarte C; Acuña E; Schoeman DS
    PLoS One; 2017; 12(5):e0177116. PubMed ID: 28481897
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Collapse and rescue of evolutionary food webs under global warming.
    Yacine Y; Allhoff KT; Weinbach A; Loeuille N
    J Anim Ecol; 2021 Mar; 90(3):710-722. PubMed ID: 33314119
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Responses of community-level plant-insect interactions to climate warming in a meadow steppe.
    Zhu H; Zou X; Wang D; Wan S; Wang L; Guo J
    Sci Rep; 2015 Dec; 5():18654. PubMed ID: 26686758
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Theory of temperature-dependent consumer-resource interactions.
    Synodinos AD; Haegeman B; Sentis A; Montoya JM
    Ecol Lett; 2021 Aug; 24(8):1539-1555. PubMed ID: 34120390
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Food web structure shaped by habitat size and climate across a latitudinal gradient.
    Romero GQ; Piccoli GC; de Omena PM; Gonçalves-Souza T
    Ecology; 2016 Oct; 97(10):2705-2715. PubMed ID: 27859108
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change.
    Bokhorst S; Phoenix GK; Berg MP; Callaghan TV; Kirby-Lambert C; Bjerke JW
    Glob Chang Biol; 2015 Nov; 21(11):4063-75. PubMed ID: 26111101
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Warming alters food web-driven changes in the CO2 flux of experimental pond ecosystems.
    Atwood TB; Hammill E; Kratina P; Greig HS; Shurin JB; Richardson JS
    Biol Lett; 2015 Dec; 11(12):20150785. PubMed ID: 26631247
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species.
    Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F
    Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549
    [TBL] [Abstract][Full Text] [Related]  

  • 77. New perspectives in ocean acidification research: editor's introduction to the special feature on ocean acidification.
    Munday PL
    Biol Lett; 2017 Sep; 13(9):. PubMed ID: 28877955
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States.
    Pyne MI; Poff NL
    Glob Chang Biol; 2017 Jan; 23(1):77-93. PubMed ID: 27429092
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Interactive effects of global warming and eutrophication on a fast-growing Mediterranean seagrass.
    Ontoria Y; Gonzalez-Guedes E; Sanmartí N; Bernardeau-Esteller J; Ruiz JM; Romero J; Pérez M
    Mar Environ Res; 2019 Mar; 145():27-38. PubMed ID: 30795849
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nonadditive impacts of temperature and basal resource availability on predator-prey interactions and phenotypes.
    Costa ZJ; Kishida O
    Oecologia; 2015 Aug; 178(4):1215-25. PubMed ID: 25820751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.