These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28544315)

  • 1. Markovnikov versus anti-Markovnikov Hydrophosphination: Divergent Reactivity Using an Iron(II) β-Diketiminate Pre-Catalyst.
    King AK; Gallagher KJ; Mahon MF; Webster RL
    Chemistry; 2017 Jul; 23(38):9039-9043. PubMed ID: 28544315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile, Catalytic Dehydrocoupling of Phosphines Using β-Diketiminate Iron(II) Complexes.
    King AK; Buchard A; Mahon MF; Webster RL
    Chemistry; 2015 Nov; 21(45):15960-3. PubMed ID: 26406999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Anti-Markovnikov Selective Oxidative Arene Alkenylation Using Ir(I) Catalyst Precursors and Cu(II) Carboxylates.
    Ketcham H; Zhu W; Gunnoe TB
    Organometallics; 2024 Apr; 43(7):774-786. PubMed ID: 38606203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room temperature hydrophosphination using a simple iron salen pre-catalyst.
    Gallagher KJ; Webster RL
    Chem Commun (Camb); 2014 Oct; 50(81):12109-11. PubMed ID: 25168587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markovnikov-Selective Radical Addition of S-Nucleophiles to Terminal Alkynes through a Photoredox Process.
    Wang H; Lu Q; Chiang CW; Luo Y; Zhou J; Wang G; Lei A
    Angew Chem Int Ed Engl; 2017 Jan; 56(2):595-599. PubMed ID: 27925394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges in Catalytic Hydrophosphination.
    Bange CA; Waterman R
    Chemistry; 2016 Aug; 22(36):12598-605. PubMed ID: 27405918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic hydrophosphination of styrenes.
    Shulyupin MO; Kazankova MA; Beletskaya IP
    Org Lett; 2002 Mar; 4(5):761-3. PubMed ID: 11869121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Studies of Ruthenium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes: Intermediates and Evidence for Catalysis through pi-Arene Complexes.
    Takaya J; Hartwig JF
    J Am Chem Soc; 2005 Apr; 127(16):5756-7. PubMed ID: 15839651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical mechanism for selective catalysis of double hydrophosphination of terminal arylacetylenes by an iron complex.
    Liu M; Sun C; Hang F; Sun N; Chen D
    Dalton Trans; 2014 Mar; 43(12):4813-21. PubMed ID: 24481118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca
    Lapshin IV; Basalov IV; Lyssenko KA; Cherkasov AV; Trifonov AA
    Chemistry; 2019 Jan; 25(2):459-463. PubMed ID: 30411413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly active, chemo- and regioselective Yb(II) and Sm(II) catalysts for the hydrophosphination of styrene with phenylphosphine.
    Basalov IV; Dorcet V; Fukin GK; Carpentier JF; Sarazin Y; Trifonov AA
    Chemistry; 2015 Apr; 21(16):6033-6. PubMed ID: 25760678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermolecular zirconium-catalyzed hydrophosphination of alkenes and dienes with primary phosphines.
    Ghebreab MB; Bange CA; Waterman R
    J Am Chem Soc; 2014 Jul; 136(26):9240-3. PubMed ID: 24937212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general study of [(eta5-Cp')2Ti(eta2-Me3SiC2SiMe3)]-catalyzed hydroamination of terminal alkynes: regioselective formation of Markovnikov and anti-Markovnikov products and mechanistic explanation (Cp'=C5H5, C5H4Et, C5Me5).
    Tillack A; Jiao H; Garcia Castro I; Hartung CG; Beller M
    Chemistry; 2004 May; 10(10):2409-20. PubMed ID: 15146514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyst-free hydrophosphination of alkenes in presence of 2-methyltetrahydrofuran: a green and easy access to a wide range of tertiary phosphines.
    Bissessar D; Egly J; Achard T; Steffanut P; Bellemin-Laponnaz S
    RSC Adv; 2019 Aug; 9(47):27250-27256. PubMed ID: 35529201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zirconium-catalyzed intermolecular hydrophosphination using a chiral, air-stable primary phosphine.
    Bange CA; Ghebreab MB; Ficks A; Mucha NT; Higham L; Waterman R
    Dalton Trans; 2016 Feb; 45(5):1863-7. PubMed ID: 26530894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium-catalyzed anti-Markovnikov hydroamination of vinylarenes.
    Utsunomiya M; Hartwig JF
    J Am Chem Soc; 2004 Mar; 126(9):2702-3. PubMed ID: 14995178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The scope and mechanism of palladium-catalysed Markovnikov alkoxycarbonylation of alkenes.
    Li H; Dong K; Jiao H; Neumann H; Jackstell R; Beller M
    Nat Chem; 2016 Dec; 8(12):1159-1166. PubMed ID: 27874861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver-Mediated anti-Markovnikov and Markovnikov-Selective Hydrotrifluoromethylthiolation of Terminal Alkynes.
    Wu W; Dai W; Ji X; Cao S
    Org Lett; 2016 Jun; 18(12):2918-21. PubMed ID: 27227878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re(CO)5Br-catalyzed addition of carboxylic acids to terminal alkynes: a high anti-Markovnikov and recoverable homogeneous catalyst.
    Hua R; Tian X
    J Org Chem; 2004 Aug; 69(17):5782-4. PubMed ID: 15307759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-Markovnikov alkene oxidation by metal-oxo-mediated enzyme catalysis.
    Hammer SC; Kubik G; Watkins E; Huang S; Minges H; Arnold FH
    Science; 2017 Oct; 358(6360):215-218. PubMed ID: 29026041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.