BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28544452)

  • 1. A Conserved Role for VEGF Signaling in Specification of Homologous Mesenchymal Cell Types Positioned at Spatially Distinct Developmental Addresses in Early Development of Sea Urchins.
    Erkenbrack EM; Petsios E
    J Exp Zool B Mol Dev Evol; 2017 Jul; 328(5):423-432. PubMed ID: 28544452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
    Erkenbrack EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Juvenile skeletogenesis in anciently diverged sea urchin clades.
    Gao F; Thompson JR; Petsios E; Erkenbrack E; Moats RA; Bottjer DJ; Davidson EH
    Dev Biol; 2015 Apr; 400(1):148-58. PubMed ID: 25641694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae.
    Morino Y; Koga H; Tachibana K; Shoguchi E; Kiyomoto M; Wada H
    Evol Dev; 2012; 14(5):428-36. PubMed ID: 22947316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate.
    Yamazaki A; Kidachi Y; Yamaguchi M; Minokawa T
    Development; 2014 Jul; 141(13):2669-79. PubMed ID: 24924196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system.
    Bishop CD; MacNeil KE; Patel D; Taylor VJ; Burke RD
    Dev Biol; 2013 May; 377(1):236-44. PubMed ID: 23506838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of spicule-forming cells in a 'primitive' sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells.
    Wray GA; McClay DR
    Development; 1988 Jun; 103(2):305-15. PubMed ID: 3066611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids.
    Erkenbrack EM
    Dev Genes Evol; 2018 Jan; 228(1):1-11. PubMed ID: 29249002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids.
    Erkenbrack EM; Davidson EH; Peter IS
    Development; 2018 Dec; 145(24):. PubMed ID: 30470703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of a new cell type was associated with competition for a signaling ligand.
    Ettensohn CA; Adomako-Ankomah A
    PLoS Biol; 2019 Sep; 17(9):e3000460. PubMed ID: 31532765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins.
    Thompson JR; Erkenbrack EM; Hinman VF; McCauley BS; Petsios E; Bottjer DJ
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5870-5877. PubMed ID: 28584090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms.
    Erkenbrack EM; Ako-Asare K; Miller E; Tekelenburg S; Thompson JR; Romano L
    Dev Genes Evol; 2016 Jan; 226(1):37-45. PubMed ID: 26781941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses.
    Erkenbrack EM; Davidson EH
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4075-84. PubMed ID: 26170318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible cooption of a VEGF-driven tubulogenesis program for biomineralization in echinoderms.
    Morgulis M; Gildor T; Roopin M; Sher N; Malik A; Lalzar M; Dines M; Ben-Tabou de-Leon S; Khalaily L; Ben-Tabou de-Leon S
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12353-12362. PubMed ID: 31152134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sperm histones and chromatin structure of the "primitive" sea urchin Eucidaris tribuloides.
    Vodicka M; Green GR; Poccia DL
    J Exp Zool; 1990 Nov; 256(2):179-88. PubMed ID: 2280247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton.
    Duloquin L; Lhomond G; Gache C
    Development; 2007 Jun; 134(12):2293-302. PubMed ID: 17507391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid.
    Thompson JR; Petsios E; Davidson EH; Erkenbrack EM; Gao F; Bottjer DJ
    Sci Rep; 2015 Oct; 5():15541. PubMed ID: 26486232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression pattern of vascular endothelial growth factor 2 during sea urchin development.
    Kipryushina YO; Yakovlev KV; Kulakova MA; Odintsova NA
    Gene Expr Patterns; 2013 Dec; 13(8):402-6. PubMed ID: 23867171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.