BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28544452)

  • 21.
    Yamazaki A; Morino Y; Urata M; Yamaguchi M; Minokawa T; Furukawa R; Kondo M; Wada H
    Development; 2020 Feb; 147(4):. PubMed ID: 32001441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.
    Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P
    Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo.
    Ramachandran RK; Govindarajan V; Seid CA; Patil S; Tomlinson CR
    Dev Dyn; 1995 Sep; 204(1):77-88. PubMed ID: 8563028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T; Khor JM; Ettensohn CA
    Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles of hesC and gcm in echinoid larval mesenchyme cell development.
    Yamazaki A; Minokawa T
    Dev Growth Differ; 2016 Apr; 58(3):315-26. PubMed ID: 27046223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii.
    Vaughn R; Garnhart N; Garey JR; Thomas WK; Livingston BT
    Evodevo; 2012 Sep; 3(1):19. PubMed ID: 22938175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gastrulation and angiogenesis, not endothelial specification, is sensitive to partial deficiency in vascular endothelial growth factor-a in mice.
    Duan LJ; Nagy A; Fong GH
    Biol Reprod; 2003 Dec; 69(6):1852-8. PubMed ID: 12890722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Euechinoidea and Cidaroidea respond differently to ocean acidification.
    Collard M; Dery A; Dehairs F; Dubois P
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Aug; 174():45-55. PubMed ID: 24786105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution.
    Gao F; Davidson EH
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):6091-6. PubMed ID: 18413604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ocean Acidification Reduces Spine Mechanical Strength in Euechinoid but Not in Cidaroid Sea Urchins.
    Dery A; Collard M; Dubois P
    Environ Sci Technol; 2017 Apr; 51(7):3640-3648. PubMed ID: 28267915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo.
    Adomako-Ankomah A; Ettensohn CA
    Genesis; 2014 Mar; 52(3):158-72. PubMed ID: 24515750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The origin of skeleton forming cells in the sea urchin embryo.
    Urben S; Nislow C; Spiegel M
    Rouxs Arch Dev Biol; 1988 Jan; 197(8):447-456. PubMed ID: 28305470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Salvia miltiorrhiza induces VEGF expression and regulates expression of VEGF receptors in osteoblastic cells.
    Wenden A; Yang Y; Chai L; Wong RW
    Phytother Res; 2014 May; 28(5):673-7. PubMed ID: 23873436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative studies on the skeletogenic mesenchyme of echinoids.
    Minokawa T
    Dev Biol; 2017 Jul; 427(2):212-218. PubMed ID: 27856261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification.
    Fresques T; Swartz SZ; Juliano C; Morino Y; Kikuchi M; Akasaka K; Wada H; Yajima M; Wessel GM
    Evol Dev; 2016 Jul; 18(4):267-78. PubMed ID: 27402572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. "Micromere" formation and expression of endomesoderm regulatory genes during embryogenesis of the primitive echinoid Prionocidaris baculosa.
    Yamazaki A; Kidachi Y; Minokawa T
    Dev Growth Differ; 2012 Jun; 54(5):566-78. PubMed ID: 22680788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nodal signaling and the evolution of deuterostome gastrulation.
    Chea HK; Wright CV; Swalla BJ
    Dev Dyn; 2005 Oct; 234(2):269-78. PubMed ID: 16127715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.