These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 28544657)

  • 1. A Strategy to Enhance the Efficiency of Quantum Dot-Sensitized Solar Cells by Decreasing Electron Recombination with Polyoxometalate/TiO
    Chen L; Chen W; Li J; Wang J; Wang E
    ChemSusChem; 2017 Jul; 10(14):2945-2954. PubMed ID: 28544657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Efficiency MAPbI
    Sardashti MK; Zendehdel M; Nia NY; Karimian D; Sheikhi M
    ChemSusChem; 2017 Oct; 10(19):3773-3779. PubMed ID: 28688154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.
    Jiang L; You T; Deng WQ
    Nanotechnology; 2013 Oct; 24(41):415401. PubMed ID: 24045808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyoxometalate-anatase TiO2 composites are introduced into the photoanode of dye-sensitized solar cells to retard the recombination and increase the electron lifetime.
    Wang SM; Liu L; Chen WL; Wang EB; Su ZM
    Dalton Trans; 2013 Feb; 42(8):2691-5. PubMed ID: 23314419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Ion-implanted TiO2 photoanodes in quantum dot-sensitized solar cells.
    Sudhagar P; Asokan K; Ito E; Kang YS
    Nanoscale; 2012 Apr; 4(7):2416-22. PubMed ID: 22371010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells.
    Zhu G; Cheng Z; Lv T; Pan L; Zhao Q; Sun Z
    Nanoscale; 2010 Jul; 2(7):1229-32. PubMed ID: 20648354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
    Tian J; Zhang Q; Zhang L; Gao R; Shen L; Zhang S; Qu X; Cao G
    Nanoscale; 2013 Feb; 5(3):936-43. PubMed ID: 23166058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titanium oxide morphology controls charge collection efficiency in quantum dot solar cells.
    Kolay A; Kumar PN; Kumar SK; Deepa M
    Phys Chem Chem Phys; 2017 Feb; 19(6):4607-4617. PubMed ID: 28124689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material.
    Barceló I; Campiña JM; Lana-Villarreal T; Gómez R
    Phys Chem Chem Phys; 2012 Apr; 14(16):5801-7. PubMed ID: 22426179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional organized mesoporous tin oxide films templated by graft copolymers for dye-sensitized solar cells.
    Park JT; Ahn SH; Roh DK; Lee CS; Kim JH
    ChemSusChem; 2014 Jul; 7(7):2037-47. PubMed ID: 24678065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CuS/CdS Quantum Dot Composite Sensitizer and Its Applications to Various TiO2 Mesoporous Film-Based Solar Cell Devices.
    Kim M; Ochirbat A; Lee HJ
    Langmuir; 2015 Jul; 31(27):7609-15. PubMed ID: 26086801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers.
    Huang F; Zhang L; Zhang Q; Hou J; Wang H; Wang H; Peng S; Liu J; Cao G
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34482-34489. PubMed ID: 27936551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent Carbon Quantum Dots Incorporated into Dye-Sensitized TiO2 Photoanodes with Dual Contributions.
    Shi Y; Na Y; Su T; Li L; Yu J; Fan R; Yang Y
    ChemSusChem; 2016 Jun; 9(12):1498-503. PubMed ID: 27218888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CdS quantum dots sensitized solar cells based on free-standing and through-hole TiO2 nanotube arrays.
    Wang X; Zheng J; Sui X; Xie H; Liu B; Zhao X
    Dalton Trans; 2013 Oct; 42(41):14726-32. PubMed ID: 23887557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of dye-sensitized solar cells with TiO2 passivating layers prepared by electron-beam evaporation.
    Jin YS; Choi HW
    J Nanosci Nanotechnol; 2012 Jan; 12(1):662-7. PubMed ID: 22524036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Core/Shell of ZnO/TiO
    Kim JM; Lee BS; Hwang SW
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32878143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells.
    Zhao K; Pan Z; Zhong X
    J Phys Chem Lett; 2016 Feb; 7(3):406-17. PubMed ID: 26758605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells.
    Huang H; Pan L; Lim CK; Gong H; Guo J; Tse MS; Tan OK
    Small; 2013 Sep; 9(18):3153-60. PubMed ID: 23606243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A detailed study on the working mechanism of a heteropoly acid modified TiO2 photoanode for efficient dye-sensitized solar cells.
    Jiang Y; Yang Y; Qiang L; Fan R; Li L; Ye T; Na Y; Shi Y; Luan T
    Phys Chem Chem Phys; 2015 Mar; 17(10):6778-85. PubMed ID: 25669421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar Paint from TiO
    Shen G; Du Z; Pan Z; Du J; Zhong X
    ACS Omega; 2018 Jan; 3(1):1102-1109. PubMed ID: 31457952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.