These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28544731)

  • 1. Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses.
    Delvigne F; Baert J; Sassi H; Fickers P; Grünberger A; Dusny C
    Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28544731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations.
    Delvigne F; Goffin P
    Biotechnol J; 2014 Jan; 9(1):61-72. PubMed ID: 24408611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity.
    Delvigne F; Zune Q; Lara AR; Al-Soud W; Sørensen SJ
    Trends Biotechnol; 2014 Dec; 32(12):608-16. PubMed ID: 25457387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence-based tools for single-cell approaches in food microbiology.
    Bridier A; Hammes F; Canette A; Bouchez T; Briandet R
    Int J Food Microbiol; 2015 Nov; 213():2-16. PubMed ID: 26163933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell microfluidics: opportunity for bioprocess development.
    Grünberger A; Wiechert W; Kohlheyer D
    Curr Opin Biotechnol; 2014 Oct; 29():15-23. PubMed ID: 24642389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial single-cell analysis in picoliter-sized batch cultivation chambers.
    Kaganovitch E; Steurer X; Dogan D; Probst C; Wiechert W; Kohlheyer D
    N Biotechnol; 2018 Dec; 47():50-59. PubMed ID: 29550523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative measurements in single-cell analysis: towards scalability in microbial bioprocess development.
    Demling P; Westerwalbesloh C; Noack S; Wiechert W; Kohlheyer D
    Curr Opin Biotechnol; 2018 Dec; 54():121-127. PubMed ID: 29597183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives.
    Heins AL; Weuster-Botz D
    Bioprocess Biosyst Eng; 2018 Jul; 41(7):889-916. PubMed ID: 29541890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities.
    Müller S; Nebe-von-Caron G
    FEMS Microbiol Rev; 2010 Jul; 34(4):554-87. PubMed ID: 20337722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic variability in bioprocessing conditions can be tracked on the basis of on-line flow cytometry and fits to a scaling law.
    Baert J; Kinet R; Brognaux A; Delepierre A; Telek S; Sørensen SJ; Riber L; Fickers P; Delvigne F
    Biotechnol J; 2015 Aug; 10(8):1316-25. PubMed ID: 26179479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput, multiparameter analysis of single cells.
    Haselgrübler T; Haider M; Ji B; Juhasz K; Sonnleitner A; Balogi Z; Hesse J
    Anal Bioanal Chem; 2014 May; 406(14):3279-96. PubMed ID: 24292433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes.
    Dusny C; Schmid A
    Environ Microbiol; 2015 Jun; 17(6):1839-56. PubMed ID: 25330456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Go with the flow or solitary confinement: a look inside the single-cell toolbox for isolation of rare and uncultured microbes.
    Huys GR; Raes J
    Curr Opin Microbiol; 2018 Aug; 44():1-8. PubMed ID: 29908491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.
    Binder D; Drepper T; Jaeger KE; Delvigne F; Wiechert W; Kohlheyer D; Grünberger A
    Metab Eng; 2017 Jul; 42():145-156. PubMed ID: 28645641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity.
    Salek MM; Carrara F; Fernandez V; Guasto JS; Stocker R
    Nat Commun; 2019 Apr; 10(1):1877. PubMed ID: 31015402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell analysis in biotechnology, systems biology, and biocatalysis.
    Fritzsch FS; Dusny C; Frick O; Schmid A
    Annu Rev Chem Biomol Eng; 2012; 3():129-55. PubMed ID: 22468600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminating Bacterial Phenotypes at the Population and Single-Cell Level: A Comparison of Flow Cytometry and Raman Spectroscopy Fingerprinting.
    García-Timermans C; Rubbens P; Heyse J; Kerckhof FM; Props R; Skirtach AG; Waegeman W; Boon N
    Cytometry A; 2020 Jul; 97(7):713-726. PubMed ID: 31889414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic single-cell analysis in biotechnology: from monitoring towards understanding.
    Dusny C; Grünberger A
    Curr Opin Biotechnol; 2020 Jun; 63():26-33. PubMed ID: 31809975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial lifelines in bioprocesses: From concept to application.
    Blöbaum L; Haringa C; Grünberger A
    Biotechnol Adv; 2023; 62():108071. PubMed ID: 36464144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.