These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28544743)

  • 1. Deconvoluting the Bioactivity of Calcium Phosphate-Based Bone Graft Substitutes: Strategies to Understand the Role of Individual Material Properties.
    Galván-Chacón VP; Habibovic P
    Adv Healthc Mater; 2017 Jul; 6(13):. PubMed ID: 28544743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration?
    Hannink G; Arts JJ
    Injury; 2011 Sep; 42 Suppl 2():S22-5. PubMed ID: 21714966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalized biomimetic calcium phosphates for bone tissue repair.
    Bigi A; Boanini E
    J Appl Biomater Funct Mater; 2017 Nov; 15(4):e313-e325. PubMed ID: 28574097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet microfluidics as a tool for production of bioactive calcium phosphate microparticles with controllable physicochemical properties.
    Galván-Chacón VP; Costa L; Barata D; Habibovic P
    Acta Biomater; 2021 Jul; 128():486-501. PubMed ID: 33882356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration.
    Khan AF; Saleem M; Afzal A; Ali A; Khan A; Khan AR
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():245-52. PubMed ID: 24411375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response.
    Bouler JM; Pilet P; Gauthier O; Verron E
    Acta Biomater; 2017 Apr; 53():1-12. PubMed ID: 28159720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of osteoconductive biomaterials: calcium phosphates.
    LeGeros RZ
    Clin Orthop Relat Res; 2002 Feb; (395):81-98. PubMed ID: 11937868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance.
    Parent M; Baradari H; Champion E; Damia C; Viana-Trecant M
    J Control Release; 2017 Apr; 252():1-17. PubMed ID: 28232225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterials for Bone Regenerative Engineering.
    Yu X; Tang X; Gohil SV; Laurencin CT
    Adv Healthc Mater; 2015 Jun; 4(9):1268-85. PubMed ID: 25846250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic calcium phosphate ceramics for treatment of bone fractures.
    Döbelin N; Luginbühl R; Bohner M
    Chimia (Aarau); 2010; 64(10):723-9. PubMed ID: 21138161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration.
    Alves Cardoso D; Jansen JA; Leeuwenburgh SC
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2316-26. PubMed ID: 23015272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone Regeneration Using the Freshly Isolated Autologous Stromal Vascular Fraction of Adipose Tissue in Combination With Calcium Phosphate Ceramics.
    Prins HJ; Schulten EA; Ten Bruggenkate CM; Klein-Nulend J; Helder MN
    Stem Cells Transl Med; 2016 Oct; 5(10):1362-1374. PubMed ID: 27388241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms.
    Barradas AM; Yuan H; van Blitterswijk CA; Habibovic P
    Eur Cell Mater; 2011 May; 21():407-29; discussion 429. PubMed ID: 21604242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of bone-graft substitutes in large bone defects: any specific needs?
    Calori GM; Mazza E; Colombo M; Ripamonti C
    Injury; 2011 Sep; 42 Suppl 2():S56-63. PubMed ID: 21752369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking the Transcriptional Landscape of Bone Induction to Biomaterial Design Parameters.
    Groen N; Yuan H; Hebels DG; Koçer G; Mbuyi F; LaPointe V; Truckenmüller R; van Blitterswijk CA; Habibović P; de Boer J
    Adv Mater; 2017 Mar; 29(10):. PubMed ID: 27991696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria.
    Manchón A; Hamdan Alkhraisat M; Rueda-Rodriguez C; Prados-Frutos JC; Torres J; Lucas-Aparicio J; Ewald A; Gbureck U; López-Cabarcos E
    Biomed Mater; 2015 Oct; 10(5):055012. PubMed ID: 26481113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design strategies and applications of nacre-based biomaterials.
    Gerhard EM; Wang W; Li C; Guo J; Ozbolat IT; Rahn KM; Armstrong AD; Xia J; Qian G; Yang J
    Acta Biomater; 2017 May; 54():21-34. PubMed ID: 28274766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in synthesis of calcium phosphate crystals with controlled size and shape.
    Lin K; Wu C; Chang J
    Acta Biomater; 2014 Oct; 10(10):4071-102. PubMed ID: 24954909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.