These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28544847)

  • 1. Theoretical Determination of Band Edge Alignments at the Water-CuInS
    Senftle TP; Carter EA
    Langmuir; 2017 Sep; 33(37):9479-9489. PubMed ID: 28544847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial effects on the band edges of functionalized si surfaces in liquid water.
    Pham TA; Lee D; Schwegler E; Galli G
    J Am Chem Soc; 2014 Dec; 136(49):17071-7. PubMed ID: 25402590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvation effects on the band edge positions of photocatalysts from first principles.
    Ping Y; Sundararaman R; Goddard WA
    Phys Chem Chem Phys; 2015 Nov; 17(45):30499-509. PubMed ID: 26513300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.
    Hu W; Lin L; Zhang R; Yang C; Yang J
    J Am Chem Soc; 2017 Nov; 139(43):15429-15436. PubMed ID: 29027456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces.
    Kharche N; Muckerman JT; Hybertsen MS
    Phys Rev Lett; 2014 Oct; 113(17):176802. PubMed ID: 25379929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-Principles Study of the Band Diagrams and Schottky-Type Barrier Heights of Aqueous Ta
    Watanabe E; Ushiyama H; Yamashita K
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9559-9566. PubMed ID: 28251847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.
    Yu M; Doak P; Tamblyn I; Neaton JB
    J Phys Chem Lett; 2013 May; 4(10):1701-6. PubMed ID: 26282981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN.
    Moses PG; Miao M; Yan Q; Van de Walle CG
    J Chem Phys; 2011 Feb; 134(8):084703. PubMed ID: 21361552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density Functional Theory Calculation of the Band Alignment of (101̅0) In(x)Ga(1-x)N/Water Interfaces.
    Meng AC; Cheng J; Sprik M
    J Phys Chem B; 2016 Mar; 120(8):1928-39. PubMed ID: 26829439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Structure and Band Alignments of Various Phases of Titania Using the Self-Consistent Hybrid Density Functional and DFT+
    Kim WJ; Han MH; Lebègue S; Lee EK; Kim H
    Front Chem; 2019; 7():47. PubMed ID: 30792978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band bending and dipole effect at interface of metal-nanoparticles and TiO
    Sato S; Kataoka K; Jinnouchi R; Takahashi N; Sekizawa K; Kitazumi K; Ikenaga E; Asahi R; Morikawa T
    Phys Chem Chem Phys; 2018 Apr; 20(16):11342-11346. PubMed ID: 29637942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy.
    Klein A
    J Phys Condens Matter; 2015 Apr; 27(13):134201. PubMed ID: 25767081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2.
    Duncan WR; Craig CF; Prezhdo OV
    J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent dipole modulation of conduction band edge shift and charge recombination in robust dye-sensitized solar cells.
    Hao F; Jiao X; Li J; Lin H
    Nanoscale; 2013 Jan; 5(2):726-33. PubMed ID: 23223876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface properties of CVD grown graphene transferred onto MoS2(0001).
    Coy Diaz H; Addou R; Batzill M
    Nanoscale; 2014 Jan; 6(2):1071-8. PubMed ID: 24297086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation State of GaP Photoelectrode Surfaces under Electrochemical Conditions for Photocatalytic CO
    Xu S; Carter EA
    J Phys Chem B; 2020 Mar; 124(11):2255-2261. PubMed ID: 32097008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic activity of MoS
    Zhang Y
    J Chem Phys; 2022 Nov; 157(18):184703. PubMed ID: 36379787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band positions of anatase (001) and (101) surfaces in contact with water from density functional theory.
    Geiger J; Sprik M; May MM
    J Chem Phys; 2020 May; 152(19):194706. PubMed ID: 33687223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methodological Issues in First-Principle Calculations of CH
    Lodeiro L; Barría-Cáceres F; Jiménez K; Contreras R; Montero-Alejo AL; Menéndez-Proupin E
    ACS Omega; 2020 Nov; 5(45):29477-29491. PubMed ID: 33225179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.