These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2854529)

  • 1. An unusual NAD(P)H-dependent O2-.-enerating redox system in hepatoma 22a nuclei.
    Peskin AV; Konstantinov AA; Zbarsky IB
    Free Radic Res Commun; 1987; 3(1-5):47-55. PubMed ID: 2854529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide dismutase-sensitive, NAD(P)H-dependent reduction of oxygen by the membrane-bound redox chains of liver microsomes and hepatoma nuclei in the presence of adrenaline.
    Peskin AV; Zbarsky IB; Konstantinov AA
    Biochem Int; 1984 May; 8(5):733-8. PubMed ID: 6477630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Electron transport systems in the membranes of rat liver nuclei and microsomes and of hepatoma 22a].
    Peskin AV; Zbarskiĩ IB; Konstantinov AA
    Biokhimiia; 1981 Apr; 46(4):579-89. PubMed ID: 7284478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-electron reduction of an anthracycline antibiotic carminomycin by a human erythrocyte redox chain.
    Peskin AV; Bartosz G
    FEBS Lett; 1987 Jul; 219(1):212-4. PubMed ID: 3036597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [NADH- and NADPH-dependent formation of superoxide radicals in liver nuclei].
    Vartanian LS; Gurevich SM
    Biokhimiia; 1989 Jun; 54(6):1020-5. PubMed ID: 2551393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Formation of superoxide radicals by the nuclear membranes of human brain tumors].
    Tarakhovskiĭ AM; Shliakhovenko VA; Zhmareva EN; Brodskaia IA; Peskin AV
    Biull Eksp Biol Med; 1985 Jan; 99(1):88-90. PubMed ID: 2981582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The role of oxygen radicals formed during function of the membrane redox chain, in damage of nuclear DNA].
    Peskin AV
    Biokhimiia; 1996 Jan; 61(1):65-72. PubMed ID: 8679779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of anthracycline antibiotics on oxygen radical formation in rat heart.
    Doroshow JH
    Cancer Res; 1983 Feb; 43(2):460-72. PubMed ID: 6293697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adriamycin-dependent release of iron from microsomal membranes.
    Minotti G
    Arch Biochem Biophys; 1989 Jan; 268(1):398-403. PubMed ID: 2912383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel type of superoxide generating system in nuclear membranes from hepatoma 22a ascites cells.
    Peskin AV; Zbarsky IB; Konstantinov AA
    FEBS Lett; 1980 Aug; 117(1):44-8. PubMed ID: 6250901
    [No Abstract]   [Full Text] [Related]  

  • 12. Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 1992 May; 294(2):403-6. PubMed ID: 1314540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some features of nucleo-cytoplasmic RNA transport from isolated nuclei.
    Peskin AV; Koen YM; Zbarsky IB
    Mol Biol Rep; 1981 May; 7(1-3):25-30. PubMed ID: 6265758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the anthrapyrazole antitumour agent CI941 on rat liver microsome and cytochrome P-450 reductase mediated free radical processes. Inhibition of doxorubicin activation in vitro.
    Graham MA; Newell DR; Butler J; Hoey B; Patterson LH
    Biochem Pharmacol; 1987 Oct; 36(20):3345-51. PubMed ID: 2823819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The vanadate-stimulated oxidation of NAD(P)H by biomembranes is a superoxide-initiated free radical chain reaction.
    Liochev S; Fridovich I
    Arch Biochem Biophys; 1986 Oct; 250(1):139-45. PubMed ID: 3021060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source of superoxide anion radical in aerobic mixtures consisting of NAD[P]H, 5-methylphenazinium methyl sulfate and nitroblue tetrazolium chloride.
    Rao UM
    Free Radic Biol Med; 1989; 7(5):513-9. PubMed ID: 2558980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Anthracycline-Enhanced Reactive Oxygen Metabolism in Tumor Cells.
    Doroshow JH
    Oxid Med Cell Longev; 2019; 2019():9474823. PubMed ID: 31885826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.