These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2854529)

  • 21. Evidence for human liver mediated free-radical formation by doxorubicin and mitozantrone.
    Basra J; Wolf CR; Brown JR; Patterson LH
    Anticancer Drug Des; 1985 Oct; 1(1):45-52. PubMed ID: 2835961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adriamycin activation and oxygen free radical formation in human breast tumor cells: protective role of glutathione peroxidase in adriamycin resistance.
    Sinha BK; Mimnaugh EG; Rajagopalan S; Myers CE
    Cancer Res; 1989 Jul; 49(14):3844-8. PubMed ID: 2544260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vanadate-stimulated oxidation of NAD(P)H.
    Liochev SI; Fridovich I
    Free Radic Biol Med; 1989; 6(6):617-22. PubMed ID: 2546865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of adriamycin to a semiquinone-free radical by NADPH cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen.
    Berlin V; Haseltine WA
    J Biol Chem; 1981 May; 256(10):4747-56. PubMed ID: 6262301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superoxide is responsible for the vanadate stimulation of NAD(P)H oxidation by biological membranes.
    Liochev S; Fridovich I
    Arch Biochem Biophys; 1988 Jun; 263(2):299-304. PubMed ID: 2837149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [NADPH2 and organic hydroperoxide-dependent oxidation of adrenaline to adrenochromes in liver and brain microsomes].
    Savov VM; Eluashvili IA; Pisarev VA; Prilipko LL; Kagan VE
    Biull Eksp Biol Med; 1980 Nov; 90(11):555-7. PubMed ID: 6256023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nuclear DNA damage during NAD(P)H oxidation by membrane redox chains.
    Peskin AV
    Free Radic Biol Med; 1996; 20(3):313-8. PubMed ID: 8720901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals.
    Kukiełka E; Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of superoxide radicals on adrenochrome formation stimulated by arachidonic acid in bovine heart sarcolemmal vesicles.
    Guarnieri C; Ventura C; Georgountzos A; Muscari C; Budini R
    Biochim Biophys Acta; 1985 Mar; 838(3):355-60. PubMed ID: 2982420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN; Yang MX; Lasker JM; Cederbaum AI
    Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Adrenaline oxidation by tumor nuclear membranes mediated by superoxide radicals].
    Peskin AV; Tarakhovskiĭ AM; Shliakhovenko VA; Zbarskiĭ IB
    Dokl Akad Nauk SSSR; 1982; 263(5):1270-3. PubMed ID: 6284469
    [No Abstract]   [Full Text] [Related]  

  • 33. A comparative study of the redox-cycling of a quinone (rifamycin S) and a quinonimine (rifabutin) antibiotic by rat liver microsomes.
    Rao DN; Cederbaum AI
    Free Radic Biol Med; 1997; 22(3):439-46. PubMed ID: 8981035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced oxidation of NAD(P)H by oxidants in the presence of dehydrogenases but no evidence for a superoxide-propagated chain oxidation of the bound coenzymes.
    Petrat F; Bramey T; Kirsch M; Kerkweg U; De Groot H
    Free Radic Res; 2006 Aug; 40(8):857-63. PubMed ID: 17015264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superoxide generation by the respiratory chain of tumor mitochondria.
    Konstantinov AA; Peskin AV; Popova EYu ; Khomutov GB; Ruuge EK
    Biochim Biophys Acta; 1987 Oct; 894(1):1-10. PubMed ID: 2822106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adriamycin-enhanced membrane lipid peroxidation in isolated rat nuclei.
    Mimnaugh EG; Kennedy KA; Trush MA; Sinha BK
    Cancer Res; 1985 Jul; 45(7):3296-304. PubMed ID: 2988766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A possible role for membrane lipid peroxidation in anthracycline nephrotoxicity.
    Mimnaugh EG; Trush MA; Gram TE
    Biochem Pharmacol; 1986 Dec; 35(23):4327-35. PubMed ID: 3024646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of rubomycin, carminomycin and adriamycin on respiration in liver mitochondria in various metabolic states, respiratory control and ADP/O ratio].
    Gorskaia IA; Suslova AI; Kotel'nikova AV
    Biokhimiia; 1987 Jan; 52(1):53-7. PubMed ID: 3814654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ferritin stimulation of hydroxyl radical production by rat liver nuclei.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1994 Jan; 308(1):70-7. PubMed ID: 8311476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers.
    Mimnaugh EG; Gram TE; Trush MA
    J Pharmacol Exp Ther; 1983 Sep; 226(3):806-16. PubMed ID: 6411900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.