These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 28545505)

  • 41. RNA-Mediated Reprogramming of Primary Adult Human Dermal Fibroblasts into c-kit(+) Cardiac Progenitor Cells.
    Pratico ED; Feger BJ; Watson MJ; Sullenger BA; Bowles DE; Milano CA; Nair SK
    Stem Cells Dev; 2015 Nov; 24(22):2622-33. PubMed ID: 26176491
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MicroRNAs and Cardiac Regeneration.
    Hodgkinson CP; Kang MH; Dal-Pra S; Mirotsou M; Dzau VJ
    Circ Res; 2015 May; 116(10):1700-11. PubMed ID: 25953925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming.
    Yamakawa H; Ieda M
    Int Heart J; 2015; 56(1):1-5. PubMed ID: 25742939
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct Cardiac Reprogramming with Engineered miRNA Scaffolds.
    Muniyandi P; Maekawa T; Hanajiri T; Palaninathan V
    Curr Pharm Des; 2020; 26(34):4285-4303. PubMed ID: 32216733
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo reprogramming as a new approach to cardiac regenerative therapy.
    Sadahiro T; Ieda M
    Semin Cell Dev Biol; 2022 Feb; 122():21-27. PubMed ID: 34210577
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical suppression of specific C-C chemokine signaling pathways enhances cardiac reprogramming.
    Guo Y; Lei I; Tian S; Gao W; Hacer K; Li Y; Wang S; Liu L; Wang Z
    J Biol Chem; 2019 Jun; 294(23):9134-9146. PubMed ID: 31023824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discovery and progress of direct cardiac reprogramming.
    Kojima H; Ieda M
    Cell Mol Life Sci; 2017 Jun; 74(12):2203-2215. PubMed ID: 28197667
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction.
    Ma H; Wang L; Liu J; Qian L
    Methods Mol Biol; 2017; 1521():69-88. PubMed ID: 27910042
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heart Development, Diseases, and Regeneration - New Approaches From Innervation, Fibroblasts, and Reprogramming.
    Ieda M
    Circ J; 2016 Sep; 80(10):2081-8. PubMed ID: 27599529
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of cardiac fibroblasts reprogramming into cardiomyocyte-like cells with a cocktail of small molecule compounds.
    Chang D; Sun C; Tian X; Liu H; Jia Y; Guo Z
    FEBS Open Bio; 2024 Jun; 14(6):983-1000. PubMed ID: 38693086
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct cardiac reprogramming comes of age: Recent advance and remaining challenges.
    Xie Y; Liu J; Qian L
    Semin Cell Dev Biol; 2022 Feb; 122():37-43. PubMed ID: 34304993
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.
    Muraoka N; Yamakawa H; Miyamoto K; Sadahiro T; Umei T; Isomi M; Nakashima H; Akiyama M; Wada R; Inagawa K; Nishiyama T; Kaneda R; Fukuda T; Takeda S; Tohyama S; Hashimoto H; Kawamura Y; Goshima N; Aeba R; Yamagishi H; Fukuda K; Ieda M
    EMBO J; 2014 Jul; 33(14):1565-81. PubMed ID: 24920580
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes.
    Yang L; Xue S; Du M; Lian F
    Int J Nanomedicine; 2021; 16():3741-3754. PubMed ID: 34113099
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis.
    Muraoka N; Ieda M
    Annu Rev Physiol; 2014; 76():21-37. PubMed ID: 24079415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier.
    Chang Y; Lee E; Kim J; Kwon YW; Kwon Y; Kim J
    Biomaterials; 2019 Feb; 192():500-509. PubMed ID: 30513475
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generation of Induced Cardiospheres via Reprogramming of Skin Fibroblasts for Myocardial Regeneration.
    Xu JY; Lee YK; Ran X; Liao SY; Yang J; Au KW; Lai WH; Esteban MA; Tse HF
    Stem Cells; 2016 Nov; 34(11):2693-2706. PubMed ID: 27333945
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heart regeneration using reprogramming technology.
    Ieda M
    Proc Jpn Acad Ser B Phys Biol Sci; 2013; 89(3):118-28. PubMed ID: 23474887
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct Reprogramming of Resident Non-Myocyte Cells and Its Potential for In Vivo Cardiac Regeneration.
    Perveen S; Vanni R; Lo Iacono M; Rastaldo R; Giachino C
    Cells; 2023 Apr; 12(8):. PubMed ID: 37190075
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing Cardiomyocyte Subtypes Following Transcription Factor-mediated Reprogramming of Mouse Embryonic Fibroblasts.
    Fernandez-Perez A; Munshi NV
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362413
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In Vitro Conversion of Murine Fibroblasts into Cardiomyocyte-Like Cells.
    Xu J; Wang L; Liu J; Qian L
    Methods Mol Biol; 2021; 2158():155-170. PubMed ID: 32857372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.