These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 28545505)

  • 61. Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction.
    Miyamoto K; Akiyama M; Tamura F; Isomi M; Yamakawa H; Sadahiro T; Muraoka N; Kojima H; Haginiwa S; Kurotsu S; Tani H; Wang L; Qian L; Inoue M; Ide Y; Kurokawa J; Yamamoto T; Seki T; Aeba R; Yamagishi H; Fukuda K; Ieda M
    Cell Stem Cell; 2018 Jan; 22(1):91-103.e5. PubMed ID: 29276141
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Less may be more: Using small molecules to reprogram human cells into functional cardiomyocytes.
    Kota PS; Naguib MR; Patel V; Rosengart TK
    J Thorac Cardiovasc Surg; 2017 Jan; 153(1):128-130. PubMed ID: 27726873
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ensuring expression of four core cardiogenic transcription factors enhances cardiac reprogramming.
    Zhang Z; Zhang AD; Kim LJ; Nam YJ
    Sci Rep; 2019 Apr; 9(1):6362. PubMed ID: 31019236
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Key Regulators of Cardiovascular Differentiation and Regeneration: Harnessing the Potential of Direct Reprogramming to Treat Heart Failure.
    Ieda M
    J Card Fail; 2020 Jan; 26(1):80-84. PubMed ID: 31541743
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4.
    Wang H; Cao N; Spencer CI; Nie B; Ma T; Xu T; Zhang Y; Wang X; Srivastava D; Ding S
    Cell Rep; 2014 Mar; 6(5):951-60. PubMed ID: 24561253
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte.
    Liu Z; Wang L; Welch JD; Ma H; Zhou Y; Vaseghi HR; Yu S; Wall JB; Alimohamadi S; Zheng M; Yin C; Shen W; Prins JF; Liu J; Qian L
    Nature; 2017 Nov; 551(7678):100-104. PubMed ID: 29072293
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Potential Strategies for Cardiac Diseases: Lineage Reprogramming of Somatic Cells into Induced Cardiomyocytes.
    Wang M; Ling W; Xiong C; Xie D; Chu X; Li Y; Qiu X; Li Y; Xiao X
    Cell Reprogram; 2019 Apr; 21(2):63-77. PubMed ID: 30907633
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Generation of Functional Human Cardiac Progenitor Cells by High-Efficiency Protein Transduction.
    Li XH; Li Q; Jiang L; Deng C; Liu Z; Fu Y; Zhang M; Tan H; Feng Y; Shan Z; Wang J; Yu XY
    Stem Cells Transl Med; 2015 Dec; 4(12):1415-24. PubMed ID: 26564862
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells.
    Protze S; Khattak S; Poulet C; Lindemann D; Tanaka EM; Ravens U
    J Mol Cell Cardiol; 2012 Sep; 53(3):323-32. PubMed ID: 22575762
    [TBL] [Abstract][Full Text] [Related]  

  • 70. From fibroblast cells to cardiomyocytes: direct lineage reprogramming.
    Yang L
    Stem Cell Res Ther; 2011 Jan; 2(1):1. PubMed ID: 21241459
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development of direct cardiac reprogramming for clinical applications.
    Yamada Y; Sadahiro T; Ieda M
    J Mol Cell Cardiol; 2023 May; 178():1-8. PubMed ID: 36918145
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular discoveries and treatment strategies by direct reprogramming in cardiac regeneration.
    Werner JH; Rosenberg JH; Um JY; Moulton MJ; Agrawal DK
    Transl Res; 2019 Jan; 203():73-87. PubMed ID: 30142308
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optimizing delivery for efficient cardiac reprogramming.
    Kang MH; Hu J; Pratt RE; Hodgkinson CP; Asokan A; Dzau VJ
    Biochem Biophys Res Commun; 2020 Nov; 533(1):9-16. PubMed ID: 32917363
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Conversion of human fibroblasts into functional cardiomyocytes by small molecules.
    Cao N; Huang Y; Zheng J; Spencer CI; Zhang Y; Fu JD; Nie B; Xie M; Zhang M; Wang H; Ma T; Xu T; Shi G; Srivastava D; Ding S
    Science; 2016 Jun; 352(6290):1216-20. PubMed ID: 27127239
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Turning cardiac fibroblasts into cardiomyocytes in vivo.
    Xu C
    Trends Mol Med; 2012 Oct; 18(10):575-6. PubMed ID: 22770847
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Induced cardiomyocyte maturation: Cardiac transcription factors are necessary but not sufficient.
    Dal-Pra S; Hodgkinson CP; Dzau VJ
    PLoS One; 2019; 14(10):e0223842. PubMed ID: 31622977
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Partial reprogramming as a therapeutic approach for heart disease: A state-of-the-art review.
    Talkhabi M
    J Cell Biochem; 2019 Sep; 120(9):14247-14261. PubMed ID: 31081174
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Direct Reprogramming of Adult Human Cardiac Fibroblasts into Induced Cardiomyocytes Using miRcombo.
    Paoletti C; Divieto C; Chiono V
    Methods Mol Biol; 2022; 2573():31-40. PubMed ID: 36040584
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Non-viral approaches for somatic cell reprogramming into cardiomyocytes.
    Zhou W; Ma T; Ding S
    Semin Cell Dev Biol; 2022 Feb; 122():28-36. PubMed ID: 34238675
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Direct reprogramming into desired cell types by defined factors.
    Ieda M
    Keio J Med; 2013; 62(3):74-82. PubMed ID: 23801083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.