These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 28545836)

  • 1. Symptom severity classification with gradient tree boosting.
    Liu Y; Gu Y; Nguyen JC; Li H; Zhang J; Gao Y; Huang Y
    J Biomed Inform; 2017 Nov; 75S():S105-S111. PubMed ID: 28545836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic recognition of symptom severity from psychiatric evaluation records.
    Goodwin TR; Maldonado R; Harabagiu SM
    J Biomed Inform; 2017 Nov; 75S():S71-S84. PubMed ID: 28576748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symptom severity prediction from neuropsychiatric clinical records: Overview of 2016 CEGS N-GRID shared tasks Track 2.
    Filannino M; Stubbs A; Uzuner Ö
    J Biomed Inform; 2017 Nov; 75S():S62-S70. PubMed ID: 28455151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ordinal convolutional neural networks for predicting RDoC positive valence psychiatric symptom severity scores.
    Rios A; Kavuluru R
    J Biomed Inform; 2017 Nov; 75S():S85-S93. PubMed ID: 28506904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive modeling for classification of positive valence system symptom severity from initial psychiatric evaluation records.
    Posada JD; Barda AJ; Shi L; Xue D; Ruiz V; Kuan PH; Ryan ND; Tsui FR
    J Biomed Inform; 2017 Nov; 75S():S94-S104. PubMed ID: 28571784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic mining of symptom severity from psychiatric evaluation notes.
    Karystianis G; Nevado AJ; Kim CH; Dehghan A; Keane JA; Nenadic G
    Int J Methods Psychiatr Res; 2018 Mar; 27(1):. PubMed ID: 29271009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic classification of RDoC positive valence severity with a neural network.
    Clark C; Wellner B; Davis R; Aberdeen J; Hirschman L
    J Biomed Inform; 2017 Nov; 75S():S120-S128. PubMed ID: 28694118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counting trees in Random Forests: Predicting symptom severity in psychiatric intake reports.
    Scheurwegs E; Sushil M; Tulkens S; Daelemans W; Luyckx K
    J Biomed Inform; 2017 Nov; 75S():S112-S119. PubMed ID: 28602906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of automated classification of major depressive disorder as a function of symptom severity.
    Ramasubbu R; Brown MR; Cortese F; Gaxiola I; Goodyear B; Greenshaw AJ; Dursun SM; Greiner R
    Neuroimage Clin; 2016; 12():320-31. PubMed ID: 27551669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.
    Nishio M; Nishizawa M; Sugiyama O; Kojima R; Yakami M; Kuroda T; Togashi K
    PLoS One; 2018; 13(4):e0195875. PubMed ID: 29672639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychiatric symptom recognition without labeled data using distributional representations of phrases and on-line knowledge.
    Zhang Y; Zhang O; Wu Y; Lee HJ; Xu J; Xu H; Roberts K
    J Biomed Inform; 2017 Nov; 75S():S129-S137. PubMed ID: 28624644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting hospital-acquired infections: A document classification approach using support vector machines and gradient tree boosting.
    Ehrentraut C; Ekholm M; Tanushi H; Tiedemann J; Dalianis H
    Health Informatics J; 2018 Mar; 24(1):24-42. PubMed ID: 27496862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches.
    Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T
    Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of cause of death from forensic autopsy reports using text classification techniques: A comparative study.
    Mujtaba G; Shuib L; Raj RG; Rajandram R; Shaikh K
    J Forensic Leg Med; 2018 Jul; 57():41-50. PubMed ID: 29801951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Health-related quality of life in children and adolescents who have a diagnosis of attention-deficit/hyperactivity disorder.
    Klassen AF; Miller A; Fine S
    Pediatrics; 2004 Nov; 114(5):e541-7. PubMed ID: 15520087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield.
    Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP
    AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding Activity Prediction of Cyclin-Dependent Inhibitors.
    Saha I; Rak B; Bhowmick SS; Maulik U; Bhattacharjee D; Koch U; Lazniewski M; Plewczynski D
    J Chem Inf Model; 2015 Jul; 55(7):1469-82. PubMed ID: 26079845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-Age Prediction Using Shallow Machine Learning: Predictive Analytics Competition 2019.
    Da Costa PF; Dafflon J; Pinaya WHL
    Front Psychiatry; 2020; 11():604478. PubMed ID: 33343431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity.
    Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T
    Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De-identification of clinical notes via recurrent neural network and conditional random field.
    Liu Z; Tang B; Wang X; Chen Q
    J Biomed Inform; 2017 Nov; 75S():S34-S42. PubMed ID: 28579533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.