These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28546092)

  • 21. Rice proteomics: a cornerstone for cereal food crop proteomes.
    Agrawal GK; Rakwal R
    Mass Spectrom Rev; 2006; 25(1):1-53. PubMed ID: 15957154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant hormone-mediated regulation of stress responses.
    Verma V; Ravindran P; Kumar PP
    BMC Plant Biol; 2016 Apr; 16():86. PubMed ID: 27079791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant subcellular proteomics: Application for exploring optimal cell function in soybean.
    Wang X; Komatsu S
    J Proteomics; 2016 Jun; 143():45-56. PubMed ID: 26808589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in proteomics of cereals.
    Bansal M; Sharma M; Kanwar P; Goyal A
    Biotechnol Genet Eng Rev; 2016; 32(1-2):1-17. PubMed ID: 28449638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives.
    Chakraborty S; Salekdeh GH; Yang P; Woo SH; Chin CF; Gehring C; Haynes PA; Mirzaei M; Komatsu S
    J Proteome Res; 2015 Jul; 14(7):2723-44. PubMed ID: 26035454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomics for abiotic stresses in legumes: present status and future directions.
    Jan N; Rather AM; John R; Chaturvedi P; Ghatak A; Weckwerth W; Zargar SM; Mir RA; Khan MA; Mir RR
    Crit Rev Biotechnol; 2023 Mar; 43(2):171-190. PubMed ID: 35109728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolo-proteomics to discover plant biotic stress resistance genes.
    Kushalappa AC; Gunnaiah R
    Trends Plant Sci; 2013 Sep; 18(9):522-31. PubMed ID: 23790252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.
    Barkla BJ; Castellanos-Cervantes T; de León JL; Matros A; Mock HP; Perez-Alfocea F; Salekdeh GH; Witzel K; Zörb C
    Proteomics; 2013 Jun; 13(12-13):1885-900. PubMed ID: 23723162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomics dissection of plant responses to mineral nutrient deficiency.
    Liang C; Tian J; Liao H
    Proteomics; 2013 Feb; 13(3-4):624-36. PubMed ID: 23193087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Omics Revolution in Agricultural Research.
    Van Emon JM
    J Agric Food Chem; 2016 Jan; 64(1):36-44. PubMed ID: 26468989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective.
    Muthamilarasan M; Singh NK; Prasad M
    Adv Genet; 2019; 103():1-38. PubMed ID: 30904092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rice proteomics: a model system for crop improvement and food security.
    Kim ST; Kim SG; Agrawal GK; Kikuchi S; Rakwal R
    Proteomics; 2014 Mar; 14(4-5):593-610. PubMed ID: 24323464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient proteomic approach to analyze agriculture crop biomass.
    Flodrova D; Bobalova J
    Protein J; 2013 Jun; 32(5):365-72. PubMed ID: 23681363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MS-based analytical methodologies to characterize genetically modified crops.
    García-Cañas V; Simó C; León C; Ibáñez E; Cifuentes A
    Mass Spectrom Rev; 2011; 30(3):396-416. PubMed ID: 21500243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rice proteomics: ending phase I and the beginning of phase II.
    Agrawal GK; Jwa NS; Rakwal R
    Proteomics; 2009 Feb; 9(4):935-63. PubMed ID: 19212951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating biological variation in non-transgenic crops: executive summary from the ILSI Health and Environmental Sciences Institute workshop, November 16-17, 2009, Paris, France.
    Doerrer N; Ladics G; McClain S; Herouet-Guicheney C; Poulsen LK; Privalle L; Stagg N
    Regul Toxicol Pharmacol; 2010 Dec; 58(3 Suppl):S2-7. PubMed ID: 20615445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. miRNAs: Major modulators for crop growth and development under abiotic stresses.
    Noman A; Fahad S; Aqeel M; Ali U; Amanullah ; Anwar S; Baloch SK; Zainab M
    Biotechnol Lett; 2017 May; 39(5):685-700. PubMed ID: 28238061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Meeting the challenge of developing food crops with improved nutritional quality and food safety: leveraging proteomics and related omics techniques.
    Jain S; Rustagi A; Kumar D; Yusuf MA; Shekhar S; Sarin NB
    Biotechnol Lett; 2019 May; 41(4-5):471-481. PubMed ID: 30820711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective.
    Johnová P; Skalák J; Saiz-Fernández I; Brzobohatý B
    Biochim Biophys Acta; 2016 Aug; 1864(8):916-31. PubMed ID: 26861773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein and Proteome Atlas for Plants under Stresses: New Highlights and Ways for Integrated Omics in Post-Genomics Era.
    Wang X
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31640274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.