BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28546137)

  • 1. Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting.
    O'Brien MK; Shawen N; Mummidisetty CK; Kaur S; Bo X; Poellabauer C; Kording K; Jayaraman A
    J Med Internet Res; 2017 May; 19(5):e184. PubMed ID: 28546137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.
    Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H
    J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury.
    Albert MV; Azeze Y; Courtois M; Jayaraman A
    J Neuroeng Rehabil; 2017 Feb; 14(1):10. PubMed ID: 28166824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of a smartphone-based balance assessment system for subjects with chronic stroke.
    Hou YR; Chiu YL; Chiang SL; Chen HY; Sung WH
    Comput Methods Programs Biomed; 2018 Jul; 161():191-195. PubMed ID: 29852961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Functional Arm Movement after Stroke Using a Single Wrist-Worn Sensor and Machine Learning.
    Bochniewicz EM; Emmer G; McLeod A; Barth J; Dromerick AW; Lum P
    J Stroke Cerebrovasc Dis; 2017 Dec; 26(12):2880-2887. PubMed ID: 28781056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerometer monitoring of home- and community-based ambulatory activity after stroke.
    Haeuber E; Shaughnessy M; Forrester LW; Coleman KL; Macko RF
    Arch Phys Med Rehabil; 2004 Dec; 85(12):1997-2001. PubMed ID: 15605339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a Smartphone-based Human Activity Recognition System in a Daily Living Environment.
    Lemaire ED; Tundo MD; Baddour N
    J Vis Exp; 2015 Dec; (106):e53004. PubMed ID: 26710275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.
    Massé F; Gonzenbach RR; Arami A; Paraschiv-Ionescu A; Luft AR; Aminian K
    J Neuroeng Rehabil; 2015 Aug; 12():72. PubMed ID: 26303929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications.
    Shawen N; Lonini L; Mummidisetty CK; Shparii I; Albert MV; Kording K; Jayaraman A
    JMIR Mhealth Uhealth; 2017 Oct; 5(10):e151. PubMed ID: 29021127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile Phone-Based Measures of Activity, Step Count, and Gait Speed: Results From a Study of Older Ambulatory Adults in a Naturalistic Setting.
    Rye Hanton C; Kwon YJ; Aung T; Whittington J; High RR; Goulding EH; Schenk AK; Bonasera SJ
    JMIR Mhealth Uhealth; 2017 Oct; 5(10):e104. PubMed ID: 28974482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Pediatric SmartShoe: Wearable Sensor System for Ambulatory Monitoring of Physical Activity and Gait.
    Hegde N; Zhang T; Uswatte G; Taub E; Barman J; McKay S; Taylor A; Morris DM; Griffin A; Sazonov ES
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):477-486. PubMed ID: 29432115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictors of functional and gait outcomes for persons poststroke undergoing home-based rehabilitation.
    Asiri FY; Marchetti GF; Ellis JL; Otis L; Sparto PJ; Watzlaf V; Whitney SL
    J Stroke Cerebrovasc Dis; 2014 Aug; 23(7):1856-64. PubMed ID: 24809670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach to ambulatory monitoring: investigation into the quantity and control of everyday walking in patients with subacute stroke.
    Prajapati SK; Gage WH; Brooks D; Black SE; McIlroy WE
    Neurorehabil Neural Repair; 2011 Jan; 25(1):6-14. PubMed ID: 20829413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of gait and posture classification using movement sensors in individuals with mobility impairment after stroke.
    Pohl J; Ryser A; Veerbeek JM; Verheyden G; Vogt JE; Luft AR; Easthope CA
    Front Physiol; 2022; 13():933987. PubMed ID: 36225292
    [No Abstract]   [Full Text] [Related]  

  • 19. Objective Assessment of Physical Activity: Classifiers for Public Health.
    Kerr J; Patterson RE; Ellis K; Godbole S; Johnson E; Lanckriet G; Staudenmayer J
    Med Sci Sports Exerc; 2016 May; 48(5):951-7. PubMed ID: 27089222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hand, belt, pocket or bag: Practical activity tracking with mobile phones.
    Antos SA; Albert MV; Kording KP
    J Neurosci Methods; 2014 Jul; 231():22-30. PubMed ID: 24091138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.