These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 28546809)

  • 1. Comparison of Brain Activation during Motor Imagery and Motor Movement Using fNIRS.
    Batula AM; Mark JA; Kim YE; Ayaz H
    Comput Intell Neurosci; 2017; 2017():5491296. PubMed ID: 28546809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface.
    Zhang S; Zheng Y; Wang D; Wang L; Ma J; Zhang J; Xu W; Li D; Zhang D
    Neurosci Lett; 2017 Aug; 655():35-40. PubMed ID: 28663052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of motor imagery on intermanual transfer: a near-infrared spectroscopy and behavioural study.
    Amemiya K; Ishizu T; Ayabe T; Kojima S
    Brain Res; 2010 Jul; 1343():93-103. PubMed ID: 20423702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG oscillatory patterns and classification of sequential compound limb motor imagery.
    Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D
    J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-Causality Brain Connectivity Differences of Finger Movements between Motor Execution and Motor Imagery.
    Chen C; Zhang J; Belkacem AN; Zhang S; Xu R; Hao B; Gao Q; Shin D; Wang C; Ming D
    J Healthc Eng; 2019; 2019():5068283. PubMed ID: 31662834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI.
    Erdoĝan SB; Özsarfati E; Dilek B; Kadak KS; Hanoĝlu L; Akın A
    J Neural Eng; 2019 Apr; 16(2):026029. PubMed ID: 30634177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface.
    Batula AM; Kim YE; Ayaz H
    Biomed Res Int; 2017; 2017():1463512. PubMed ID: 28804712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain activation during execution and motor imagery of novel and skilled sequential hand movements.
    Lacourse MG; Orr EL; Cramer SC; Cohen MJ
    Neuroimage; 2005 Sep; 27(3):505-19. PubMed ID: 16046149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of EEG oscillatory patterns and cognitive process during simple and compound limb motor imagery.
    Yi W; Qiu S; Wang K; Qi H; Zhang L; Zhou P; He F; Ming D
    PLoS One; 2014; 9(12):e114853. PubMed ID: 25489941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study.
    Holper L; Wolf M
    J Neuroeng Rehabil; 2011 Jun; 8():34. PubMed ID: 21682906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characterization of electrical brain activity related to hand motor imagery in healthy subjects].
    Cantillo-Negrete J; Gutiérrez-Martínez J; Flores-Rodríguez TB; Cariño-Escobar RI; Elías-Viñas D
    Rev Invest Clin; 2014 Jul; 66 Suppl 1():S111-21. PubMed ID: 25264791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Which motor cortical region best predicts imagined movement?
    Park CH; Chang WH; Lee M; Kwon GH; Kim L; Kim ST; Kim YH
    Neuroimage; 2015 Jun; 113():101-10. PubMed ID: 25800212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG feature comparison and classification of simple and compound limb motor imagery.
    Yi W; Qiu S; Qi H; Zhang L; Wan B; Ming D
    J Neuroeng Rehabil; 2013 Oct; 10():106. PubMed ID: 24119261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating a four-class motor-imagery-based optical brain-computer interface.
    Batula AM; Ayaz H; Kim YE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2000-3. PubMed ID: 25570375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.