These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28546900)

  • 1. Response to Kruse-Plass et al. (2017) regarding the risk to non-target lepidopteran larvae exposed to pollen from one or more of three Bt maize events (MON810, Bt11 and 1507).
    Perry JN; Barberi P; Bartsch D; Birch ANE; Gathmann A; Kiss J; Manachini B; Nuti M; Rauschen S; Schiemann J; Schuppener M; Sweet J; Tebbe CC; Veronesi F
    Environ Sci Eur; 2017; 29(1):21. PubMed ID: 28546900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reply to the EFSA (2016) on the relevance of recent publications (Hofmann et al. 2014, 2016) on environmental risk assessment and management of Bt-maize events (MON810, Bt11 and 1507).
    Kruse-Plass M; Hofmann F; Kuhn U; Otto M; Schlechtriemen U; Schröder B; Vögel R; Wosniok W
    Environ Sci Eur; 2017; 29(1):12. PubMed ID: 28331779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation and variability of maize pollen deposition on leaves of European Lepidoptera host plants and relation to release rates and deposition determined by standardised technical sampling.
    Hofmann F; Kruse-Plass M; Kuhn U; Otto M; Schlechtriemen U; Schröder B; Vögel R; Wosniok W
    Environ Sci Eur; 2016; 28(1):14. PubMed ID: 27752448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum to: Reply to the EFSA (2016) on the relevance of recent publications (Hofmann et al. 2014, 2016) on environmental risk assessment and management of Bt-maize events (MON810, Bt11 and 1507).
    Kruse-Plass M; Hofmann F; Kuhn U; Otto M; Schlechtriemen U; Schröder B; Vögel R; Wosniok W
    Environ Sci Eur; 2017; 29(1):20. PubMed ID: 31305796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies.
    Stanley-Horn DE; Dively GP; Hellmich RL; Mattila HR; Sears MK; Rose R; Jesse LC; Losey JE; Obrycki JJ; Lewis L
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):11931-6. PubMed ID: 11559839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Bt maize pollen (MON810) on lepidopteran larvae living on accompanying weeds.
    Gathmann A; Wirooks L; Hothorn LA; Bartsch D; Schuphan I
    Mol Ecol; 2006 Aug; 15(9):2677-85. PubMed ID: 16842436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Method for in Situ Measurement of Bt-Maize Pollen Deposition on Host-Plant Leaves.
    Hofmann F; Otto M; Kuhn U; Ober S; Schlechtriemen U; Vögel R
    Insects; 2011 Feb; 2(1):12-21. PubMed ID: 26467496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Bt maize on Agrotis segetum (Lepidoptera: Noctuidae): a pest of maize seedlings.
    Erasmus A; Van Rensburg JB; Van den Berg J
    Environ Entomol; 2010 Apr; 39(2):702-6. PubMed ID: 20388305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental risk assessment for the small tortoiseshell Aglais urticae and a stacked Bt-maize with combined resistances against Lepidoptera and Chrysomelidae in central European agrarian landscapes.
    Schuppener M; Mühlhause J; Müller AK; Rauschen S
    Mol Ecol; 2012 Sep; 21(18):4646-62. PubMed ID: 22861488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Update of environmental risk assessment conclusions and risk management recommendations of EFSA (2016) on EU teosinte.
    ; Devos Y; Aiassa E; Muñoz-Guajardo I; Messéan A; Mullins E
    EFSA J; 2022 Apr; 20(4):e07228. PubMed ID: 35386925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Bt-176 maize pollen on first instar larvae of the Peacock butterfly (Inachis io) (Lepidoptera; Nymphalidae).
    Felke M; Langenbruch GA; Feiertag S; Kassa A
    Environ Biosafety Res; 2010; 9(1):5-12. PubMed ID: 21122482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the effects of Cry1F Bt-maize pollen on non-target Lepidoptera using a mathematical model of exposure.
    Perry JN; Devos Y; Arpaia S; Bartsch D; Ehlert C; Gathmann A; Hails RS; Hendriksen NB; Kiss J; Messéan A; Mestdagh S; Neemann G; Nuti M; Sweet JB; Tebbe CC
    J Appl Ecol; 2012 Feb; 49(1):29-37. PubMed ID: 22496596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of Aglais urticae (L.) and its host plant Urtica dioica (L.) in an agricultural landscape: implications for Bt maize risk assessment and post-market monitoring.
    Gathmann A; Wirooks L; Eckert J; Schuphan I
    Environ Biosafety Res; 2006; 5(1):27-36. PubMed ID: 16978572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy evaluation of two transgenic maize events expressing fused proteins to CrylAb-susceptible and -resistant Ostrinia furnacalis (Lepidoptera: Crambidae).
    Chang X; Liu GG; He KL; Shen ZC; Peng YF; Ye GY
    J Econ Entomol; 2013 Dec; 106(6):2548-56. PubMed ID: 24498757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetically engineered plants, endangered species, and risk: a temporal and spatial exposure assessment for Karner blue butterfly larvae and Bt maize pollen.
    Peterson RK; Meyer SJ; Wolf AT; Wolt JD; Davis PM
    Risk Anal; 2006 Jun; 26(3):845-58. PubMed ID: 16834638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ecological risk assessment of Cry1F maize pollen impact to pale grass blue butterfly.
    Wolt JD; Conlan CA; Majima K
    Environ Biosafety Res; 2005; 4(4):243-51. PubMed ID: 16827552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of relevant non-target herbivores for monitoring the environmental effects of Bt maize pollen.
    Schmitz G; Bartsch D; Pretscher P
    Environ Biosafety Res; 2003; 2(2):117-32. PubMed ID: 15612277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk assessment of information on the subcombination Bt11 × MIR162, related to the application of Syngenta (EFSA-GMO-DE-2009-66) for authorisation of food and feed containing, consisting and produced from genetically modified maize Bt11 × MIR162 × MIR604 × GA21.
    ; Naegeli H; Birch AN; Casacuberta J; De Schrijver A; Gralak MA; Guerche P; Jones H; Manachini B; Messéan A; Nielsen EE; Nogué F; Robaglia C; Rostoks N; Sweet J; Tebbe C; Visioli F; Wal JM; Paraskevopoulos K
    EFSA J; 2017 Mar; 15(3):e04745. PubMed ID: 32625447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the potential exposure of butterflies to genetically modified maize pollen in protected areas in Italy.
    Arpaia S; Baldacchino F; Bosi S; Burgio G; Errico S; Magarelli RA; Masetti A; Santorsola S
    Insect Sci; 2018 Aug; 25(4):549-561. PubMed ID: 29569843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay.
    Galeano P; Debat CM; Ruibal F; Fraguas LF; Galván GA
    Environ Biosafety Res; 2010; 9(3):147-54. PubMed ID: 21975255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.