These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 28547105)

  • 21. Direct and indirect effects of elevated atmospheric CO2 on net ecosystem production in a Chesapeake Bay tidal wetland.
    Erickson JE; Peresta G; Montovan KJ; Drake BG
    Glob Chang Biol; 2013 Nov; 19(11):3368-78. PubMed ID: 23828758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of litter degradation in medicinal plants subjected to ultraviolet-B radiation.
    Agrawal SB; Kumari R
    J Environ Biol; 2013 Jul; 34(4):739-45. PubMed ID: 24640251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microcosm tests of the effects of temperature and microbial species number on the decomposition of Carex aquatilis and Sphagnum fuscum litter from southern boreal peatlands.
    Thormann MN; Bayley SE; Currah RS
    Can J Microbiol; 2004 Oct; 50(10):793-802. PubMed ID: 15644893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The response of fast- and slow-growing Acacia species to elevated atmospheric CO
    Atkin OK; Schortemeyer M; McFarlane N; Evans JR
    Oecologia; 1999 Sep; 120(4):544-554. PubMed ID: 28308305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of 13C and 15N mass spectrometry to study the decomposition of Calamagrostis epigeios in soil column experiments with and without ash additions.
    Ludwig B; Heil B; Flessa H; Beese F
    Isotopes Environ Health Stud; 2000; 36(1):49-61. PubMed ID: 11022325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Opposing effects of elevated CO
    Hättenschwiler S; Schafellner C
    Oecologia; 1999 Feb; 118(2):210-217. PubMed ID: 28307696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodiversity and decomposition in experimental grassland ecosystems.
    Knops JMH; Wedin D; Tilman D
    Oecologia; 2001 Feb; 126(3):429-433. PubMed ID: 28547458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plastic and adaptive responses of plant respiration to changes in atmospheric CO(2) concentration.
    Gonzàlez-Meler MA; Blanc-Betes E; Flower CE; Ward JK; Gomez-Casanovas N
    Physiol Plant; 2009 Dec; 137(4):473-84. PubMed ID: 19671094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities.
    Quested HM; Press MC; Callaghan TV; Cornelissen HJ
    Oecologia; 2002 Jan; 130(1):88-95. PubMed ID: 28547029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2.
    Hines J; Eisenhauer N; Drake BG
    Glob Chang Biol; 2015 Dec; 21(12):4642-50. PubMed ID: 25953075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO(2) against measurements from an 11-year FACE experiment on grazed pasture.
    Li FY; Newton PC; Lieffering M
    Glob Chang Biol; 2014 Jan; 20(1):228-39. PubMed ID: 23959970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fraction of expanding to expanded leaves determines the biomass response of Populus to elevated CO
    Wait DA; Jones CG; Wynn J; Woodward FI
    Oecologia; 1999 Nov; 121(2):193-200. PubMed ID: 28308559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined effects of atmospheric CO
    Mikan CJ; Zak DR; Kubiske ME; Pregitzer KS
    Oecologia; 2000 Aug; 124(3):432-445. PubMed ID: 28308783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of UV-B radiation on the chemical composition and subsequent decomposition of Cyclobalanopsis glauca leaf litter].
    Song XZ; Bu T; Zhang SK; Jiang H; Wang ZK; Zhao MS; Liu YJ
    Huan Jing Ke Xue; 2013 Jun; 34(6):2355-60. PubMed ID: 23947056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leaf litter decomposition of native and introduced tree species of contrasting quality in headwater streams: how does the regional setting matter?
    Casas JJ; Larrañaga A; Menéndez M; Pozo J; Basaguren A; Martínez A; Pérez J; González JM; Mollá S; Casado C; Descals E; Roblas N; López-González JA; Valenzuela JL
    Sci Total Environ; 2013 Aug; 458-460():197-208. PubMed ID: 23648449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Response of a root hemiparasite to elevated CO
    Matthies D; Egli P
    Oecologia; 1999 Jul; 120(1):156-161. PubMed ID: 28308047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does nitrogen nutrition restrict the CO
    Zanetti S; Hartwig UA; van Kessel C; Lüscher A; Hebeisen T; Frehner M; Fischer BU; Hendrey GR; Blum H; Nösberger J
    Oecologia; 1997 Sep; 112(1):17-25. PubMed ID: 28307370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of elevated CO
    Edwards G; Clark H; Newton P
    Oecologia; 2001 May; 127(3):383-394. PubMed ID: 28547109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feeding rates of Balloniscus sellowii (Crustacea, Isopoda, Oniscidea): the effect of leaf litter decomposition and its relation to the phenolic and flavonoid content.
    Wood CT; Schlindwein CC; Soares GL; Araujo PB
    Zookeys; 2012; (176):231-45. PubMed ID: 22536111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.