These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 28547231)

  • 1. Coping with low nutrient availability and inundation: root growth responses of three halophytic grass species from different elevations along a flooding gradient.
    Bouma TJ; Koutstaal BP; van Dongen M; Nielsen KL
    Oecologia; 2001 Feb; 126(4):472-481. PubMed ID: 28547231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Inundation, Nutrient Availability and Plant Species Diversity on Fine Root Mass and Morphology Across a Saltmarsh Flooding Gradient.
    Redelstein R; Dinter T; Hertel D; Leuschner C
    Front Plant Sci; 2018; 9():98. PubMed ID: 29467778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize.
    Wu Q; Pagès L; Wu J
    Ann Bot; 2016 Mar; 117(3):379-90. PubMed ID: 26744490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing morphological plasticity of root orders in slow- and fast-growing citrus rootstocks supplied with different nitrate levels.
    Sorgonà' A; Abenavoli MR; Gringeri PG; Cacco G
    Ann Bot; 2007 Dec; 100(6):1287-96. PubMed ID: 17881338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional-structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils.
    De Bauw P; Mai TH; Schnepf A; Merckx R; Smolders E; Vanderborght J
    Ann Bot; 2020 Sep; 126(4):789-806. PubMed ID: 32597468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water sources of plant uptake along a salt marsh flooding gradient.
    Redelstein R; Coners H; Knohl A; Leuschner C
    Oecologia; 2018 Oct; 188(2):607-622. PubMed ID: 30051213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal).
    Carvalho LM; Caçador I; Martins-Loução M
    Mycorrhiza; 2001 Dec; 11(6):303-9. PubMed ID: 24549351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root system architecture of Quercus pubescens trees growing on different sloping conditions.
    Di Iorio A; Lasserre B; Scippa GS; Chiatante D
    Ann Bot; 2005 Jan; 95(2):351-61. PubMed ID: 15567806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waterlogging responses in dune, swale and marsh populations of Spartina patens under field conditions.
    Burdick DM; Mendelssohn IA
    Oecologia; 1987 Dec; 74(3):321-329. PubMed ID: 28312467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant-Mediated Rhizosphere Oxygenation in the Native Invasive Salt Marsh Grass
    Koop-Jakobsen K; Meier RJ; Mueller P
    Front Plant Sci; 2021; 12():669751. PubMed ID: 34177984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships among root branch order, carbon, and nitrogen in four temperate species.
    Pregitzer KS; Kubiske ME; Yu CK; Hendrick RL
    Oecologia; 1997 Jul; 111(3):302-308. PubMed ID: 28308123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of variability in the diameter of lateral roots in the banana root system.
    Lecompte F; Pagès L; Ozier-Lafontaine H
    New Phytol; 2005 Sep; 167(3):841-50. PubMed ID: 16101920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal).
    Santos-Echeandía J; Vale C; Caetano M; Pereira P; Prego R
    Mar Environ Res; 2010 Dec; 70(5):358-67. PubMed ID: 20727578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient limitation and plant species composition in temperate salt marshes.
    Kiehl K; Esselink P; Bakker JP
    Oecologia; 1997 Jul; 111(3):325-330. PubMed ID: 28308126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient levels modify saltmarsh responses to increased inundation in different soil types.
    Wong JX; Van Colen C; Airoldi L
    Mar Environ Res; 2015 Mar; 104():37-46. PubMed ID: 25594372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability.
    Fransen B; de Kroon H; Berendse F
    Oecologia; 1998 Jul; 115(3):351-358. PubMed ID: 28308426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of shading and N status on root proliferation in nutrient patches by the perennial grass Agropyron desertorum in the field.
    Bilbrough CJ; Caldwell MM
    Oecologia; 1995 Jul; 103(1):10-16. PubMed ID: 28306939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics.
    Rubio G; Oesterheld M; Alvarez CR; Lavado RS
    Oecologia; 1997 Oct; 112(2):150-155. PubMed ID: 28307564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root proliferation characteristics of seven perennial arid-land grasses in nutrient-enriched microsites.
    Larigauderie A; Richards JH
    Oecologia; 1994 Sep; 99(1-2):102-111. PubMed ID: 28313954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and development of roots of grapevine (Vitis vinifera L.) in relation to water uptake from soil.
    Mapfumo E; Aspinall D; Hancock TW
    Ann Bot; 1994 Jul; 74(1):75-85. PubMed ID: 19700465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.