These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 28547305)

  • 1. Plants feed ants: food bodies of myrmecophytic Piper and their significance for the interaction with Pheidole bicornis ants.
    Fischer RC; Richter A; Wanek W; Mayer V
    Oecologia; 2002 Oct; 133(2):186-192. PubMed ID: 28547305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Code of ant-plant mutualism broken by parasite.
    Letourneau DK
    Science; 1990 Apr; 248(4952):215-7. PubMed ID: 17740138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive aggression: An alternative hypothesis for the Piper-Pheidole association.
    Letourneau DK
    Oecologia; 1983 Oct; 60(1):122-126. PubMed ID: 28310545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trade-offs in antiherbivore defenses in Piper cenocladum: ant mutualists versus plant secondary metabolites.
    Dyer LA; Dodson CD; Beihoffer J; Letourneau DK
    J Chem Ecol; 2001 Mar; 27(3):581-92. PubMed ID: 11441447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem diversity, cauline domatia, and the evolution of ant-plant associations in Piper sect. Macrostachys (Piperaceae).
    Tepe EJ; Vincent MA; Watson LE
    Am J Bot; 2007 Jan; 94(1):1-11. PubMed ID: 21642202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the cauline domatia of two newly discovered ecuadorian ant plants in piper: an example of convergent evolution.
    Tepe EJ; Kelley WA; Rodriguez-Castañeda G; Dyer LA
    J Insect Sci; 2009; 9():27. PubMed ID: 19613856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exclusive rewards in mutualisms: ant proteases and plant protease inhibitors create a lock-key system to protect Acacia food bodies from exploitation.
    Orona-Tamayo D; Wielsch N; Blanco-Labra A; Svatos A; Farías-Rodríguez R; Heil M
    Mol Ecol; 2013 Aug; 22(15):4087-100. PubMed ID: 23683294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutualism between Maieta guianensis Aubl., a myrmecophytic melastome, and one of its ant inhabitants: ant protection against insect herbivores.
    Vasconcelos HL
    Oecologia; 1991 Jul; 87(2):295-298. PubMed ID: 28313848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental, behavioral, and chemical analysis of food limitations in mutualistic
    Houadria MYI; Barone G; Fayle TM; Schmitt T; Konik P; Feldhaar H
    Ecol Evol; 2023 Feb; 13(2):e9760. PubMed ID: 36778840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon and nitrogen contents of food bodies in three myrmecophytic species of Macaranga: implications for antiherbivore defense mechanisms.
    Hatada A; Itioka T; Yamaoka R; Itino T
    J Plant Res; 2002 Jun; 115(3):179-84. PubMed ID: 12579367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.
    Emer C; Venticinque EM; Fonseca CR
    Conserv Biol; 2013 Aug; 27(4):763-73. PubMed ID: 23551525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential host use in two highly specialized ant-plant associations: evidence from stable isotopes.
    Trimble ST; Sagers CL
    Oecologia; 2004 Jan; 138(1):74-82. PubMed ID: 14564500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon and nitrogen isotopes trace nutrient exchange in an ant-plant mutualism.
    Sagers CL; Ginger SM; Evans RD
    Oecologia; 2000 Jun; 123(4):582-586. PubMed ID: 28308767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revision and Microtomography of the Pheidole knowlesi Group, an Endemic Ant Radiation in Fiji (Hymenoptera, Formicidae, Myrmicinae)Myrmicinae).
    Fischer G; Sarnat EM; Economo EP
    PLoS One; 2016; 11(7):e0158544. PubMed ID: 27462877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Curious Case of the Camelthorn: Competition, Coexistence, and Nest-Site Limitation in a Multispecies Mutualism.
    Campbell H; Fellowes MD; Cook JM
    Am Nat; 2015 Dec; 186(6):E172-81. PubMed ID: 26655993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy, ultrastructure and chemical composition of food bodies of Hovenia dulcis (Rhamnaceae).
    Buono RA; de Oliveira AB; Paiva EA
    Ann Bot; 2008 Jun; 101(9):1341-8. PubMed ID: 18413656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pheidole Westwood, 1839 ants (Formicidae: Myrmicinae) in Colombia: new records including two species with remarkable morphology.
    Guerrero RJ; Garca E; Fernndez F
    Zootaxa; 2022 Jun; 5154(3):319-332. PubMed ID: 36095619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of food presentation and microhabitat upon resource monopoly in a ground-foraging ant (Hymenoptera: Formicidae) community.
    McGlynn TP; Kirksey SE
    Rev Biol Trop; 2000; 48(2-3):629-41. PubMed ID: 11354970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does exogenic food benefit both partners in an ant-plant mutualism? The case of Cecropia obtusa and its guest Azteca plant-ants.
    Dejean A; Petitclerc F; Roux O; Orivel J; Leroy C
    C R Biol; 2012 Mar; 335(3):214-9. PubMed ID: 22464429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions.
    Voglmayr H; Mayer V; Maschwitz U; Moog J; Djieto-Lordon C; Blatrix R
    Fungal Biol; 2011 Oct; 115(10):1077-91. PubMed ID: 21944219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.