These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28547401)

  • 1. Production and microtopography of bog bryophytes: response to warming and water-table manipulations.
    Weltzin JF; Harth C; Bridgham SD; Pastor J; Vonderharr M
    Oecologia; 2001 Aug; 128(4):557-565. PubMed ID: 28547401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RAPID CARBON RESPONSE OF PEATLANDS TO CLIMATE CHANGE.
    Bridgham SD; Pastor J; Dewey B; Weltzin JF; Updegraff K
    Ecology; 2008 Nov; 89(11):3041-3048. PubMed ID: 31766807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental controls on ground cover species composition and productivity in a boreal black spruce forest.
    Bisbee KE; Gower ST; Norman JM; Nordheim EV
    Oecologia; 2001 Oct; 129(2):261-270. PubMed ID: 28547605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification.
    Soudzilovskaia NA; Cornelissen JH; During HJ; van Logtestijn RS; Lang SI; Aerts R
    Ecology; 2010 Sep; 91(9):2716-26. PubMed ID: 20957965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Niches of seven bryophyte species in Hani peat land of Changbai Mountains].
    Chen X; Bu ZJ; Wang SZ; Li HK; Zhao HY
    Ying Yong Sheng Tai Xue Bao; 2009 Mar; 20(3):574-8. PubMed ID: 19637594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid loss of an ecosystem engineer:
    Norby RJ; Childs J; Hanson PJ; Warren JM
    Ecol Evol; 2019 Nov; 9(22):12571-12585. PubMed ID: 31788198
    [No Abstract]   [Full Text] [Related]  

  • 7. Historical peat loss explains limited short-term response of drained blanket bogs to rewetting.
    Williamson J; Rowe E; Reed D; Ruffino L; Jones P; Dolan R; Buckingham H; Norris D; Astbury S; Evans CD
    J Environ Manage; 2017 Mar; 188():278-286. PubMed ID: 27992818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.
    Lou XD; Zhai SQ; Kang B; Hu YL; Hu LL
    PLoS One; 2014; 9(11):e109861. PubMed ID: 25369065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting growth responses of dominant peatland plants to warming and vegetation composition.
    Walker TN; Ward SE; Ostle NJ; Bardgett RD
    Oecologia; 2015 May; 178(1):141-51. PubMed ID: 25687830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testate amoeba records indicate regional 20th-century lowering of water tables in ombrotrophic peatlands in central-northern Alberta, Canada.
    van Bellen S; Magnan G; Davies L; Froese D; Mullan-Boudreau G; Zaccone C; Garneau M; Shotyk W
    Glob Chang Biol; 2018 Jul; 24(7):2758-2774. PubMed ID: 29569789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microform-related community patterns of methane-cycling microbes in boreal Sphagnum bogs are site specific.
    Juottonen H; Kotiaho M; Robinson D; Merilä P; Fritze H; Tuittila ES
    FEMS Microbiol Ecol; 2015 Sep; 91(9):fiv094. PubMed ID: 26220310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for older carbon loss with lowered water tables and changing plant functional groups in peatlands.
    Stuart JEM; Tucker CL; Lilleskov EA; Kolka RK; Chimner RA; Heckman KA; Kane ES
    Glob Chang Biol; 2023 Feb; 29(3):780-793. PubMed ID: 36308039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bryophyte cover and richness decline after 18 years of experimental warming in alpine Sweden.
    Alatalo JM; Jägerbrand AK; Erfanian MB; Chen S; Sun SQ; Molau U
    AoB Plants; 2020 Dec; 12(6):plaa061. PubMed ID: 33408847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct and interaction-mediated effects of environmental changes on peatland bryophytes.
    Bu ZJ; Rydin H; Chen X
    Oecologia; 2011 Jun; 166(2):555-63. PubMed ID: 21170747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes.
    Mäkiranta P; Laiho R; Mehtätalo L; Straková P; Sormunen J; Minkkinen K; Penttilä T; Fritze H; Tuittila ES
    Glob Chang Biol; 2018 Mar; 24(3):944-956. PubMed ID: 28994163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inference of future bog succession trajectory from spatial chronosequence of changing aapa mires.
    Kolari THM; Tahvanainen T
    Ecol Evol; 2023 Apr; 13(4):e9988. PubMed ID: 37082320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishing peat-forming plant communities: A comparison of wetland reclamation methods in Alberta's oil sands region.
    Borkenhagen A; Cooper DJ; House M; Vitt DH
    Ecol Appl; 2024 Mar; 34(2):e2929. PubMed ID: 37942503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relating Bryophyte Assemblages to a Remotely Sensed Depth-to-Water Index in Boreal Forests.
    Bartels SF; Caners RT; Ogilvie J; White B; Macdonald SE
    Front Plant Sci; 2018; 9():858. PubMed ID: 29988528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different temporal trends in vascular plant and bryophyte communities along elevational gradients over four decades.
    Becker-Scarpitta A; Auberson-Lavoie D; Aussenac R; Vellend M
    Ecol Evol; 2022 Aug; 12(8):e9102. PubMed ID: 36016818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events.
    Heijmans MM; van der Knaap YA; Holmgren M; Limpens J
    Glob Chang Biol; 2013 Jul; 19(7):2240-50. PubMed ID: 23526779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.