These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28547415)

  • 1. Environmental controls on carbon dioxide flux from black spruce coarse woody debris.
    Wang C; Bond-Lamberty B; Gower ST
    Oecologia; 2002 Aug; 132(3):374-381. PubMed ID: 28547415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal trends and sources of variation in carbon flux from coarse woody debris in experimental forest canopy openings.
    Forrester JA; Mladenoff DJ; D'Amato AW; Fraver S; Lindner DL; Brazee NJ; Clayton MK; Gower ST
    Oecologia; 2015 Nov; 179(3):889-900. PubMed ID: 26201261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China.
    Yuan J; Hou L; Wei X; Shang Z; Cheng F; Zhang S
    PLoS One; 2017; 12(4):e0175203. PubMed ID: 28384317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prescribed fire is an effective restoration measure for increasing boreal fungal diversity.
    Ramberg E; Berglund H; Penttilä R; Strengbom J; Jönsson M
    Ecol Appl; 2023 Sep; 33(6):e2892. PubMed ID: 37232443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse woody debris decomposition assessment tool: Model development and sensitivity analysis.
    Dai Z; Trettin CC; Burton AJ; Jurgensen MF; Page-Dumroese DS; Forschler BT; Schilling JS; Lindner DL
    PLoS One; 2021; 16(6):e0251893. PubMed ID: 34086700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of coarse woody detritus-related carbon: a synthesis across forest biomes.
    Harmon ME; Fasth BG; Yatskov M; Kastendick D; Rock J; Woodall CW
    Carbon Balance Manag; 2020 Jan; 15(1):1. PubMed ID: 31940113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse Woody Debris Decomposition Assessment Tool: Model validation and application.
    Dai Z; Trettin CC; Burton AJ; Jurgensen MF; Page-Dumroese DS; Forschler BT; Schilling JS; Lindner DL
    PLoS One; 2021; 16(7):e0254408. PubMed ID: 34242323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Woody debris contribution to the carbon budget of selectively logged and maturing mid-latitude forests.
    Liu WH; Bryant DM; Hutyra LR; Saleska SR; Hammond-Pyle E; Curran D; Wofsy SC
    Oecologia; 2006 May; 148(1):108-17. PubMed ID: 16463056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon flux from decomposing wood and its dependency on temperature, wood N
    Rinne-Garmston KT; Peltoniemi K; Chen J; Peltoniemi M; Fritze H; Mäkipää R
    Glob Chang Biol; 2019 May; 25(5):1852-1867. PubMed ID: 30767385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence.
    Bond-Lamberty B; Wang C; Gower ST
    Tree Physiol; 2004 Dec; 24(12):1387-95. PubMed ID: 15465701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.
    Girardin MP; Hogg EH; Bernier PY; Kurz WA; Guo XJ; Cyr G
    Glob Chang Biol; 2016 Feb; 22(2):627-43. PubMed ID: 26507106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation and connectivity of coarse woody debris in partial harvest and unmanaged relict forests.
    Morrissey RC; Jenkins MA; Saunders MR
    PLoS One; 2014; 9(11):e113323. PubMed ID: 25409459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental controls on ground cover species composition and productivity in a boreal black spruce forest.
    Bisbee KE; Gower ST; Norman JM; Nordheim EV
    Oecologia; 2001 Oct; 129(2):261-270. PubMed ID: 28547605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postfire succession of saproxylic arthropods, with emphasis on coleoptera, in the north boreal forest of Quebec.
    Boulanger Y; Sirois L
    Environ Entomol; 2007 Feb; 36(1):128-41. PubMed ID: 17349126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?
    Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G
    Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils.
    Kwak JH; Chang SX; Naeth MA; Schaaf W
    PLoS One; 2015; 10(11):e0143857. PubMed ID: 26618605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Coarse woody debris loading capacity and its environmental gradient in Huzhong forest area of Great Xing' an Mountains].
    Wang WJ; Chang Y; Liu ZH; Chen HW; Jing GZ; Zhang HX; Wang JH
    Ying Yong Sheng Tai Xue Bao; 2009 Apr; 20(4):773-8. PubMed ID: 19565754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.
    Angstmann JL; Ewers BE; Kwon H
    Tree Physiol; 2012 May; 32(5):599-611. PubMed ID: 22539635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent long-term trends and interannual variation in ecosystem resource use efficiencies of a southern boreal old black spruce forest 1999-2017.
    Liu P; Black TA; Jassal RS; Zha T; Nesic Z; Barr AG; Helgason WD; Jia X; Tian Y; Stephens JJ; Ma J
    Glob Chang Biol; 2019 Sep; 25(9):3056-3069. PubMed ID: 31055880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of CO2 exchange between Boreal forest and the atmosphere.
    Black TA; Gaumont-Guay D; Jassal RS; Amiro BD; Jarvis PG; Gower ST; Kelliher FM; Dunn A; Wofsy SC
    SEB Exp Biol Ser; 2005; ():151-85. PubMed ID: 17633035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.