These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28547481)

  • 1. Changes in flowering phenology of woody plants from 1963 to 2014 in North China.
    Wang H; Zhong S; Tao Z; Dai J; Ge Q
    Int J Biometeorol; 2019 May; 63(5):579-590. PubMed ID: 28547481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial heterogeneity of first flowering date in Beijing's main urban area and its response to urban thermal environment.
    Xing X; Zhang M; Li K; Hao P; Dong L
    Int J Biometeorol; 2022 Oct; 66(10):1929-1954. PubMed ID: 36048247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa.
    Mazer SJ; Travers SE; Cook BI; Davies TJ; Bolmgren K; Kraft NJ; Salamin N; Inouye DW
    Am J Bot; 2013 Jul; 100(7):1381-97. PubMed ID: 23752756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in the temperature sensitivity of spring leaf phenology from 1978 to 2014 in Mudanjiang, China.
    Dai J; Xu Y; Wang H; Alatalo J; Tao Z; Ge Q
    Int J Biometeorol; 2019 May; 63(5):569-577. PubMed ID: 29249042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal Variation of
    Wang X; Liu Y; Li X; He S; Zhong M; Shang F
    Front Plant Sci; 2021; 12():716071. PubMed ID: 35126403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions.
    Hulme PE
    New Phytol; 2011 Jan; 189(1):272-81. PubMed ID: 20807339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenological changes in herbaceous plants in China's grasslands and their responses to climate change: a meta-analysis.
    Huang W; Dai J; Wang W; Li J; Feng C; Du J
    Int J Biometeorol; 2020 Nov; 64(11):1865-1876. PubMed ID: 32734424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple phenological responses to climate change among 42 plant species in Xi'an, China.
    Dai J; Wang H; Ge Q
    Int J Biometeorol; 2013 Sep; 57(5):749-58. PubMed ID: 23114575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community.
    Mulder CP; Iles DT; Rockwell RF
    Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shifts in the flowering phenology of the northern Great Plains: patterns over 100 years.
    Dunnell KL; Travers SE
    Am J Bot; 2011 Jun; 98(6):935-45. PubMed ID: 21613073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overlooked climate parameters best predict flowering onset: Assessing phenological models using the elastic net.
    Park IW; Mazer SJ
    Glob Chang Biol; 2018 Dec; 24(12):5972-5984. PubMed ID: 30218548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flowering phenological changes in relation to climate change in Hungary.
    Szabó B; Vincze E; Czúcz B
    Int J Biometeorol; 2016 Sep; 60(9):1347-56. PubMed ID: 26768142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-first century.
    Ge Q; Wang H; Dai J
    Int J Biometeorol; 2014 May; 58(4):473-84. PubMed ID: 23689929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia.
    Crepinšek Z; Stampar F; Kajfež-Bogataj L; Solar A
    Int J Biometeorol; 2012 Jul; 56(4):681-94. PubMed ID: 21786017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenological response to climate change in China: a meta-analysis.
    Ge Q; Wang H; Rutishauser T; Dai J
    Glob Chang Biol; 2015 Jan; 21(1):265-74. PubMed ID: 24895088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes of flowering phenology and flower size in rosaceous plants from a biodiversity hotspot in the past century.
    Yu Q; Jia DR; Tian B; Yang YP; Duan YW
    Sci Rep; 2016 Jun; 6():28302. PubMed ID: 27312838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey.
    Bock A; Sparks TH; Estrella N; Jee N; Casebow A; Schunk C; Leuchner M; Menzel A
    Glob Chang Biol; 2014 Nov; 20(11):3508-19. PubMed ID: 24639048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Interactive Effects of Chilling, Photoperiod, and Forcing Temperature on Flowering Phenology of Temperate Woody Plants.
    Wang H; Wang H; Ge Q; Dai J
    Front Plant Sci; 2020; 11():443. PubMed ID: 32373144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.