These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28547504)

  • 1. Stream insects as passive suspension feeders: effects of velocity and food concentration on feeding performance.
    Finelli CM; Hart DD; Merz R
    Oecologia; 2002 Mar; 131(1):145-153. PubMed ID: 28547504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local modification of benthic flow environments by suspension-feeding stream insects.
    Thomson JR; Clark BD; Fingerut JT; Hart DD
    Oecologia; 2004 Aug; 140(3):533-42. PubMed ID: 15179587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feeding postures of suspension-feeding larval black flies: the conflicting demands of drag and food acquisition.
    Hart DD; Merz RA; Genovese SJ; Clark BD
    Oecologia; 1991 Feb; 85(4):457-463. PubMed ID: 28312491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow Velocity Induces a Switch From Active to Passive Suspension Feeding in the Porcelain Crab Petrolisthes leptocheles (Heller).
    Trager G; Genin A
    Biol Bull; 1993 Aug; 185(1):20-27. PubMed ID: 29300601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feeding behavior of larval black flies (Diptera: Simuliidae) with and without exposure to Bacillus thuringiensis var. israelensis.
    Stoops CA; Adler PH
    J Vector Ecol; 2006 Jun; 31(1):79-83. PubMed ID: 16859093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predator-prey interactions in a benthic stream community: a field test of flow-mediated refuges.
    Hart DD; Merz RA
    Oecologia; 1998 Apr; 114(2):263-273. PubMed ID: 28307941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyp expansion of passive suspension feeders: a red coral case study.
    Rossi S; Rizzo L; Duchêne JC
    PeerJ; 2019; 7():e7076. PubMed ID: 31328027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-assisted measurements of suspension-feeding flow velocities.
    Du Clos KT; Jones IT; Carrier TJ; Brady DC; Jumars PA
    J Exp Biol; 2017 Jun; 220(Pt 11):2096-2107. PubMed ID: 28348044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of larval size and hydrodynamics on the growth rates of the black fly Simulium tribulatum.
    Brannin MT; O'Donnell MK; Fingerut J
    Integr Zool; 2014 Jan; 9(1):61-9. PubMed ID: 24447662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of cell replacement in benthic-pelagic coupling by suspension feeders.
    Kahn AS; Leys SP
    R Soc Open Sci; 2016 Nov; 3(11):160484. PubMed ID: 28018632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suspension feeding dynamics of anuran larvae related to their functional morphology.
    Seale DB; Wassersug RJ
    Oecologia; 1979 Jan; 39(3):259-272. PubMed ID: 28309170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VacuSIP, an Improved InEx Method for In Situ Measurement of Particulate and Dissolved Compounds Processed by Active Suspension Feeders.
    Morganti T; Yahel G; Ribes M; Coma R
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27585354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk filaments enhance the settlement of stream insect larvae.
    Fingerut JT; Hart DD; McNair JN
    Oecologia; 2006 Nov; 150(2):202-12. PubMed ID: 16927103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Balancing food availability and hydrodynamic constraint: phenotypic plasticity and growth in Simulium noelleri blackfly larvae.
    Zhang Y
    Oecologia; 2006 Feb; 147(1):39-46. PubMed ID: 16187108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changing risk of predation for a filter-feeding insect along a current velocity gradient.
    Malmqvist B; Sackmann G
    Oecologia; 1996 Nov; 108(3):450-458. PubMed ID: 28307861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of suspension feeding in spionid polychaetes by high particulate fluxes.
    Taghon GL; Nowell AR; Jumars PA
    Science; 1980 Oct; 210(4469):562-4. PubMed ID: 17841404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fluid dynamics of Balanus glandula barnacles: Adaptations to sheltered and exposed habitats.
    Vo M; Mehrabian S; Villalpando F; Etienne S; Pelletier D; Cameron CB
    J Biomech; 2018 Apr; 71():225-235. PubMed ID: 29478697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of deposit-feeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling: implications for the restoration of eutrophic shallow lakes.
    Zhang X; Liu Z; Jeppesen E; Taylor WD
    Water Res; 2014 Mar; 50():135-46. PubMed ID: 24370657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive flow through an unstalked intertidal ascidian: orientation and morphology enhance suspension feeding in Pyura stolonifera.
    Knott NA; Davis AR; Buttemer WA
    Biol Bull; 2004 Dec; 207(3):217-24. PubMed ID: 15616352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feeding activity, absorption efficiency and suspension feeding processes in the ascidian, Halocynthia pyriformis (Stolidobranchia: Ascidiacea): responses to variations in diet quantity and quality.
    Armsworthy SL; MacDonald BA; Ward JE
    J Exp Mar Biol Ecol; 2001 May; 260(1):41-69. PubMed ID: 11358571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.