These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28547660)

  • 1. Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk.
    Murach MM; Kang YS; Goldman SD; Schafman MA; Schlecht SH; Moorhouse K; Bolte JH; Agnew AM
    Ann Biomed Eng; 2017 Sep; 45(9):2159-2173. PubMed ID: 28547660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed subject-specific FE rib modeling for fracture prediction.
    Iraeus J; Lundin L; Storm S; Agnew A; Kang YS; Kemper A; Albert D; Holcombe S; Pipkorn B
    Traffic Inj Prev; 2019; 20(sup2):S88-S95. PubMed ID: 31589083
    [No Abstract]   [Full Text] [Related]  

  • 3. Sources of Variability in Structural Bending Response of Pediatric and Adult Human Ribs in Dynamic Frontal Impacts.
    Agnew AM; Murach MM; Dominguez VM; Sreedhar A; Misicka E; Harden A; Bolte JH; Kang YS; Stammen J; Moorhouse K
    Stapp Car Crash J; 2018 Nov; 62():119-192. PubMed ID: 30608995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population trends in human rib cross-sectional shapes.
    Holcombe SA; Huang Y; Derstine BA
    J Anat; 2024 May; 244(5):792-802. PubMed ID: 38200705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-World Rib Fracture Patterns in Frontal Crashes in Different Restraint Conditions.
    Lee EL; Craig M; Scarboro M
    Traffic Inj Prev; 2015; 16 Suppl 2():S115-23. PubMed ID: 26436220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age and sex alone are insufficient to predict human rib structural response to dynamic A-P loading.
    Schafman MA; Kang YS; Moorhouse K; White SE; Bolte JH; Agnew AM
    J Biomech; 2016 Oct; 49(14):3516-3522. PubMed ID: 27717546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of age on the structural properties of human ribs.
    Agnew AM; Schafman M; Moorhouse K; White SE; Kang YS
    J Mech Behav Biomed Mater; 2015 Jan; 41():302-14. PubMed ID: 25260951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing FE human body model rib geometry to population data.
    Holcombe SA; Agnew AM; Derstine B; Wang SC
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2227-2239. PubMed ID: 32444978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.
    Li Z; Kindig MW; Subit D; Kent RW
    Med Eng Phys; 2010 Nov; 32(9):998-1008. PubMed ID: 20674456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel ex vivo model of compressive immature rib fractures at pathophysiological rates of loading.
    Beadle N; Burnett TL; Hoyland JA; Sherratt MJ; Freemont AJ
    J Mech Behav Biomed Mater; 2015 Nov; 51():154-62. PubMed ID: 26253206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical response of ribs under quasistatic frontal loading.
    Kindig M; Lau AG; Kent RW
    Traffic Inj Prev; 2011 Aug; 12(4):377-87. PubMed ID: 21823946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional maps of rib cortical bone thickness and cross-sectional geometry.
    Holcombe SA; Kang YS; Derstine BA; Wang SC; Agnew AM
    J Anat; 2019 Nov; 235(5):883-891. PubMed ID: 31225915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element models of rib as an inhomogeneous beam structure under high-speed impacts.
    Niu Y; Shen W; Stuhmiller JH
    Med Eng Phys; 2007 Sep; 29(7):788-98. PubMed ID: 17045511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution.
    Perz R; Toczyski J; Subit D
    J Mech Behav Biomed Mater; 2015 Jan; 41():292-301. PubMed ID: 25153615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small female rib cage fracture in frontal sled tests.
    Shaw G; Lessley D; Ash J; Poplin J; McMurry T; Sochor M; Crandall J
    Traffic Inj Prev; 2017 Jan; 18(1):77-82. PubMed ID: 27260566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age- and sex-specific thorax finite element model development and simulation.
    Schoell SL; Weaver AA; Vavalle NA; Stitzel JD
    Traffic Inj Prev; 2015; 16 Suppl 1():S57-65. PubMed ID: 26027976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring rib cortical bone thickness and cross section from CT.
    Holcombe SA; Hwang E; Derstine BA; Wang SC
    Med Image Anal; 2018 Oct; 49():27-34. PubMed ID: 30031288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of pulmonary contusion extent and its correlation to crash, occupant, and injury characteristics in motor vehicle crashes.
    Weaver AA; Danelson KA; Armstrong EG; Hoth JJ; Stitzel JD
    Accid Anal Prev; 2013 Jan; 50():223-33. PubMed ID: 22575308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subject-specific rib finite element models with material data derived from coupon tests under bending loading.
    Yates KM; Agnew AM; Albert DL; Kemper AR; Untaroiu CD
    J Mech Behav Biomed Mater; 2021 Apr; 116():104358. PubMed ID: 33610029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigations of rib fracture failure models in different dynamic loading conditions.
    Wang F; Yang J; Miller K; Li G; Joldes GR; Doyle B; Wittek A
    Comput Methods Biomech Biomed Engin; 2016; 19(5):527-37. PubMed ID: 26214136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.