These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28547685)

  • 1. Effects of induced variation in anuran larval development on postmetamorphic energy reserves and locomotion.
    Álvarez D; Nicieza AG
    Oecologia; 2002 Apr; 131(2):186-195. PubMed ID: 28547685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed effects of larval predation risk and food quality on anuran juvenile performance.
    Nicieza AG; Alvarez D; Atienza EM
    J Evol Biol; 2006 Jul; 19(4):1092-103. PubMed ID: 16780510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interacting effects of predation risk and food availability on larval anuran behaviour and development.
    Nicieza AG
    Oecologia; 2000 Jun; 123(4):497-505. PubMed ID: 28308758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial survival.
    Scott DE; Casey ED; Donovan MF; Lynch TK
    Oecologia; 2007 Sep; 153(3):521-32. PubMed ID: 17530291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecological constraints on amphibian metamorphosis: interactions of temperature and larval density with responses to changing food level.
    Newman RA
    Oecologia; 1998 Jun; 115(1-2):9-16. PubMed ID: 28308472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Larval growth rate and sex determine resource allocation and stress responsiveness across life stages in juvenile frogs.
    Warne RW; Crespi EJ
    J Exp Zool A Ecol Genet Physiol; 2015 Mar; 323(3):191-201. PubMed ID: 25676342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of temperature on energy cost and timing of embryonic and larval development of the terrestrially breeding moss frog, Bryobatrachus nimbus.
    Mitchell NJ; Seymour RS
    Physiol Biochem Zool; 2000; 73(6):829-40. PubMed ID: 11121356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of life history switch point plasticity for juvenile morphology and locomotion in the Túngara frog.
    Charbonnier JF; Vonesh JR
    PeerJ; 2015; 3():e1268. PubMed ID: 26417546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable temperature regimes and wetland salinity reduce performance of juvenile wood frogs.
    Dahrouge NC; Rittenhouse TAG
    Oecologia; 2022 Aug; 199(4):1021-1033. PubMed ID: 35984505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HYBRIDIZATION IN LEOPARD FROGS (RANA PIPIENS COMPLEX): LARVAL FITNESS COMPONENTS IN SINGLE-GENOTYPE POPULATIONS AND MIXTURES.
    Parris MJ
    Evolution; 1999 Dec; 53(6):1872-1883. PubMed ID: 28565457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate.
    Giménez L
    Ecology; 2010 May; 91(5):1401-13. PubMed ID: 20503872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Warm vegetarians? Heat waves and diet shifts in tadpoles.
    Carreira BM; Segurado P; Orizaola G; Gonçalves N; Pinto V; Laurila A; Rebelo R
    Ecology; 2016 Nov; 97(11):2964-2974. PubMed ID: 27870032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carryover effects of chronic exposure to ammonium during the larval stage on post-metamorphic frogs.
    Zamora-Camacho FJ; Zambrano-Fernández S; Aragón P
    Aquat Toxicol; 2022 Jul; 248():106196. PubMed ID: 35598377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time constraints and flexibility of growth strategies: geographic variation in catch-up growth responses in amphibian larvae.
    Dahl E; Orizaola G; Nicieza AG; Laurila A
    J Anim Ecol; 2012 Nov; 81(6):1233-1243. PubMed ID: 22742783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary selenomethionine exposure induces physical malformations and decreases growth and survival to metamorphosis in an amphibian (Hyla chrysoscelis).
    Lockard L; Rowe CL; Heyes A
    Arch Environ Contam Toxicol; 2013 Apr; 64(3):504-13. PubMed ID: 23229196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic Plasticity in Juvenile Frogs That Experienced Predation Pressure as Tadpoles Does Not Alter Their Locomotory Performance.
    Park J; Do Y
    Biology (Basel); 2023 Feb; 12(3):. PubMed ID: 36979033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of larval predators and competitors on the morphology and fitness of juvenile treefrogs.
    Relyea RA; Hoverman JT
    Oecologia; 2003 Mar; 134(4):596-604. PubMed ID: 12647133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population-specific effects of developmental temperature on body condition and jumping performance of a widespread European frog.
    Drakulić S; Feldhaar H; Lisičić D; Mioč M; Cizelj I; Seiler M; Spatz T; Rödel MO
    Ecol Evol; 2016 May; 6(10):3115-28. PubMed ID: 27092238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of multiple stressors on the growth of larval green sturgeon Acipenser medirostris: implications for recruitment of early life-history stages.
    Poletto JB; Martin B; Danner E; Baird SE; Cocherell DE; Hamda N; Cech JJ; Fangue NA
    J Fish Biol; 2018 Nov; 93(5):952-960. PubMed ID: 30246375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term changes in food availability mediate the effects of temperature on growth, development and survival in striped marsh frog larvae: implications for captive breeding programmes.
    Courtney Jones SK; Munn AJ; Penman TD; Byrne PG
    Conserv Physiol; 2015; 3(1):cov029. PubMed ID: 27293714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.