These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 28547717)

  • 1. The fate of nitrogen in gypsy moth frass deposited to an oak forest floor.
    Christenson LM; Lovett GM; Mitchell MJ; Groffman PM
    Oecologia; 2002 May; 131(3):444-452. PubMed ID: 28547717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon and nitrogen mineralization from decomposing gypsy moth frass.
    Lovett GM; Ruesink AE
    Oecologia; 1995 Oct; 104(2):133-138. PubMed ID: 28307349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of nitrogen in herbivore feces: plant recovery, herbivore assimilation, soil retention, and leaching losses.
    Frost CJ; Hunter MD
    Oecologia; 2007 Feb; 151(1):42-53. PubMed ID: 17089141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defoliation severity is positively related to soil solution nitrogen availability and negatively related to soil nitrogen concentrations following a multi-year invasive insect irruption.
    Conrad-Rooney E; Barker Plotkin A; Pasquarella VJ; Elkinton J; Chandler JL; Matthes JH
    AoB Plants; 2020 Dec; 12(6):plaa059. PubMed ID: 33324482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees.
    Hollinger DY
    Oecologia; 1986 Sep; 70(2):291-297. PubMed ID: 28311672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect Defoliators in Recovering Industrial Landscapes: Effects of Landscape Degradation and Remediation Near an Abandoned Metal Smelter on Gypsy Moth (Lepidoptera: Lymantriidae) Feeding, Frass Production, and Frass Properties.
    McTavish MJ; Smenderovac E; Gunn J; Murphy SD
    Environ Entomol; 2019 Sep; 48(5):1187-1196. PubMed ID: 31565738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf consumption by insects in three Eucalyptus forest types in Southeastern Australia and their role in short-term nutrient cycling.
    Ohmart CP; Stewart LG; Thomas JR
    Oecologia; 1983 Sep; 59(2-3):322-330. PubMed ID: 28310253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of phytophagous insects on water and soil nutrient concentrations and fluxes through forest stands of the Level II monitoring network in the UK.
    Pitman RM; Vanguelova EI; Benham SE
    Sci Total Environ; 2010 Dec; 409(1):169-81. PubMed ID: 20961599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment.
    Goodale CL; Fredriksen G; Weiss MS; McCalley K; Sparks JP; Thomas SA
    Ecology; 2015 Oct; 96(10):2653-68. PubMed ID: 26649387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of leaves damaged by
    Huang XM; Chen LC; Tian N; Guan X; Hu YL; Huang K; Su XJ; Tao X
    Ying Yong Sheng Tai Xue Bao; 2023 Mar; 34(3):770-776. PubMed ID: 37087661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive effects of resource availabilities and defoliation on photosynthesis, growth, and mortality of red oak seedlings.
    McGraw JB; Gottschalk KW; Vavrek MC; Chester AL
    Tree Physiol; 1990 Dec; 7(1_2_3_4):247-254. PubMed ID: 14972922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization.
    Matson AL; Corre MD; Veldkamp E
    Glob Chang Biol; 2014 Dec; 20(12):3802-13. PubMed ID: 24965673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caterpillar guts and ammonia volatilization: retention of nitrogen by gypsy moth larvae consuming oak foliage.
    Lovett GM; Hart JE; Christenson LM; Jones CG
    Oecologia; 1998 Dec; 117(4):513-516. PubMed ID: 28307676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.
    Leff JW; Wieder WR; Taylor PG; Townsend AR; Nemergut DR; Grandy AS; Cleveland CC
    Glob Chang Biol; 2012 Sep; 18(9):2969-79. PubMed ID: 24501071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of atmospheric nitrogen deposition in a temperate calcareous forest soil.
    Morier I; Guenat C; Siegwolf R; Védy JC; Schleppi P
    J Environ Qual; 2008; 37(6):2012-21. PubMed ID: 18948453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decomposition of
    Zeller B; Colin-Belgrand M; Dambrine E; Martin F; Bottner P
    Oecologia; 2000 Jun; 123(4):550-559. PubMed ID: 28308764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen release pattern in decomposing leaf litter of banj oak and chir pine seedlings leaf under glass house condition.
    Usman S
    J Environ Biol; 2013 Jan; 34(1):135-8. PubMed ID: 24006820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spring ephemeral herbs and nitrogen cycling in a northern hardwood forest: an experimental test of the vernal dam hypothesis.
    Rothstein DE
    Oecologia; 2000 Aug; 124(3):446-453. PubMed ID: 28308784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition.
    Blackwood CB; Waldrop MP; Zak DR; Sinsabaugh RL
    Environ Microbiol; 2007 May; 9(5):1306-16. PubMed ID: 17472642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
    Sayer EJ
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.