These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28548150)

  • 1. Using μ
    Wehrman MD; Milstrey MJ; Lindberg S; Schultz KM
    Lab Chip; 2017 Jun; 17(12):2085-2094. PubMed ID: 28548150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Microfluidics and Microrheology to Determine Rheological Properties of Soft Matter during Repeated Phase Transitions.
    Wehrman MD; Milstrey MJ; Lindberg S; Schultz KM
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the dynamic transition of hydrogenated castor oil gels measured via multiple particle tracking microrheology.
    Wehrman MD; Lindberg S; Schultz KM
    Soft Matter; 2016 Aug; 12(30):6463-72. PubMed ID: 27396611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelation phase diagrams of colloidal rod systems measured over a large composition space.
    He S; Caggioni M; Lindberg S; Schultz KM
    RSC Adv; 2022 Apr; 12(20):12902-12912. PubMed ID: 35496333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple particle tracking microrheology measured using bi-disperse probe diameters.
    Wehrman MD; Lindberg S; Schultz KM
    Soft Matter; 2018 Jul; 14(28):5811-5820. PubMed ID: 29974108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing Phase Transitions of Microfibrillated Cellulose Induced by Anionic and Cationic Surfactants.
    He S; Afshang M; Caggioni M; Lindberg S; Schultz KM
    Langmuir; 2023 Sep; 39(35):12346-12356. PubMed ID: 37616521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput rheology in a microfluidic device.
    Schultz KM; Furst EM
    Lab Chip; 2011 Nov; 11(22):3802-9. PubMed ID: 21952259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microrheological characterization of covalent adaptable hydrogel degradation in response to temporal pH changes that mimic the gastrointestinal tract.
    Wu N; Schultz KM
    Soft Matter; 2020 Jul; 16(27):6253-6258. PubMed ID: 32500893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology.
    Moschakis T; Murray BS; Dickinson E
    J Colloid Interface Sci; 2010 May; 345(2):278-85. PubMed ID: 20223466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing rheological properties and microstructure of thioester networks during degradation.
    Desai S; Carberry BJ; Anseth KS; Schultz KM
    Soft Matter; 2023 Oct; 19(38):7429-7442. PubMed ID: 37743747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, microrheological and kinetic properties of a ternary silica-Pluronic F127-starch thermosensitive system.
    Petkova-Olsson Y; Oelschlaeger C; Ullsten H; Järnström L
    J Colloid Interface Sci; 2018 Mar; 514():459-467. PubMed ID: 29289030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Evaluation on gelling properties of shuanghuanglian in situ gel by dynamic rheology].
    Chen LM; Wang JY; Tong Y; Zheng BL
    Zhongguo Zhong Yao Za Zhi; 2012 Oct; 37(19):2884-8. PubMed ID: 23270226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation.
    Moschakis T; Lazaridou A; Biliaderis CG
    J Colloid Interface Sci; 2012 Jun; 375(1):50-9. PubMed ID: 22436725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sol-gel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 2. Gel structure and mechanical properties.
    Michot LJ; Baravian C; Bihannic I; Maddi S; Moyne C; Duval JF; Levitz P; Davidson P
    Langmuir; 2009 Jan; 25(1):127-39. PubMed ID: 19067578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition.
    Celli JP; Turner BS; Afdhal NH; Ewoldt RH; McKinley GH; Bansil R; Erramilli S
    Biomacromolecules; 2007 May; 8(5):1580-6. PubMed ID: 17402780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives.
    Petit A; Müller B; Bruin P; Meyboom R; Piest M; Kroon-Batenburg LM; de Leede LG; Hennink WE; Vermonden T
    Acta Biomater; 2012 Dec; 8(12):4260-7. PubMed ID: 22877819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human mesenchymal stem cell-engineered length scale dependent rheology of the pericellular region measured with bi-disperse multiple particle tracking microrheology.
    McGlynn JA; Druggan KJ; Croland KJ; Schultz KM
    Acta Biomater; 2021 Feb; 121():405-417. PubMed ID: 33278674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive microrheology of solvent-induced fibrillar protein networks.
    Corrigan AM; Donald AM
    Langmuir; 2009 Aug; 25(15):8599-605. PubMed ID: 19344157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.